Complex normal distribution
| Complex normal | |||
|---|---|---|---|
| Parameters |
{\displaystyle \mathbf {\mu } \in \mathbb {C} ^{n}} — location | ||
| Support | {\displaystyle \mathbb {C} ^{n}} | ||
| complicated, see text | |||
| Mean | {\displaystyle \mathbf {\mu } } | ||
| Mode | {\displaystyle \mathbf {\mu } } | ||
| Variance | {\displaystyle \Gamma } | ||
| CF | {\displaystyle \exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}}} | ||
In probability theory, the family of complex normal distributions, denoted {\displaystyle {\mathcal {CN}}} or {\displaystyle {\mathcal {N}}_{\mathcal {C}}}, characterizes complex random variables whose real and imaginary parts are jointly normal.[1] The complex normal family has three parameters: location parameter μ, covariance matrix {\displaystyle \Gamma }, and the relation matrix {\displaystyle C}. The standard complex normal is the univariate distribution with {\displaystyle \mu =0}, {\displaystyle \Gamma =1}, and {\displaystyle C=0}.
An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: {\displaystyle \mu =0} and {\displaystyle C=0}.[2] This case is used extensively in signal processing, where it is sometimes referred to as just complex normal in the literature.
Definitions
[edit ]Complex standard normal random variable
[edit ]The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable {\displaystyle Z} whose real and imaginary parts are independent normally distributed random variables with mean zero and variance {\displaystyle 1/2}.[3] : p. 494 [4] : pp. 501 Formally,
where {\displaystyle Z\sim {\mathcal {CN}}(0,1)} denotes that {\displaystyle Z} is a standard complex normal random variable.
Complex normal random variable
[edit ]Suppose {\displaystyle X} and {\displaystyle Y} are real random variables such that {\displaystyle (X,Y)^{\mathrm {T} }} is a 2-dimensional normal random vector. Then the complex random variable {\displaystyle Z=X+iY} is called complex normal random variable or complex Gaussian random variable.[3] : p. 500
Complex standard normal random vector
[edit ]A n-dimensional complex random vector {\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }} is a complex standard normal random vector or complex standard Gaussian random vector if its components are independent and all of them are standard complex normal random variables as defined above.[3] : p. 502 [4] : pp. 501 That {\displaystyle \mathbf {Z} } is a standard complex normal random vector is denoted {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,{\boldsymbol {I}}_{n})}.
Complex normal random vector
[edit ]If {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\mathrm {T} }} and {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\mathrm {T} }} are random vectors in {\displaystyle \mathbb {R} ^{n}} such that {\displaystyle [\mathbf {X} ,\mathbf {Y} ]} is a normal random vector with {\displaystyle 2n} components. Then we say that the complex random vector
- {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} ,円}
is a complex normal random vector or a complex Gaussian random vector.
Mean, covariance, and relation
[edit ]The complex Gaussian distribution can be described with 3 parameters:[5]
- {\displaystyle \mu =\operatorname {E} [\mathbf {Z} ],\quad \Gamma =\operatorname {E} [(\mathbf {Z} -\mu )({\mathbf {Z} }-\mu )^{\mathrm {H} }],\quad C=\operatorname {E} [(\mathbf {Z} -\mu )(\mathbf {Z} -\mu )^{\mathrm {T} }],}
where {\displaystyle \mathbf {Z} ^{\mathrm {T} }} denotes matrix transpose of {\displaystyle \mathbf {Z} }, and {\displaystyle \mathbf {Z} ^{\mathrm {H} }} denotes conjugate transpose.[3] : p. 504 [4] : pp. 500
Here the location parameter {\displaystyle \mu } is a n-dimensional complex vector; the covariance matrix {\displaystyle \Gamma } is Hermitian and non-negative definite; and, the relation matrix or pseudo-covariance matrix {\displaystyle C} is symmetric. The complex normal random vector {\displaystyle \mathbf {Z} } can now be denoted as{\displaystyle \mathbf {Z} \ \sim \ {\mathcal {CN}}(\mu ,\ \Gamma ,\ C).}Moreover, matrices {\displaystyle \Gamma } and {\displaystyle C} are such that the matrix
- {\displaystyle P={\overline {\Gamma }}-{C}^{\mathrm {H} }\Gamma ^{-1}C}
is also non-negative definite where {\displaystyle {\overline {\Gamma }}} denotes the complex conjugate of {\displaystyle \Gamma }.[5]
Relationships between covariance matrices
[edit ]As for any complex random vector, the matrices {\displaystyle \Gamma } and {\displaystyle C} can be related to the covariance matrices of {\displaystyle \mathbf {X} =\Re (\mathbf {Z} )} and {\displaystyle \mathbf {Y} =\Im (\mathbf {Z} )} via expressions
- {\displaystyle {\begin{aligned}&V_{XX}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma +C],\quad V_{XY}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [-\Gamma +C],\\&V_{YX}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [\Gamma +C],\quad ,円V_{YY}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma -C],\end{aligned}}}
and conversely
- {\displaystyle {\begin{aligned}&\Gamma =V_{XX}+V_{YY}+i(V_{YX}-V_{XY}),\\&C=V_{XX}-V_{YY}+i(V_{YX}+V_{XY}).\end{aligned}}}
Density function
[edit ]The probability density function for complex normal distribution can be computed as
- {\displaystyle {\begin{aligned}f(z)&={\frac {1}{\pi ^{n}{\sqrt {\det(\Gamma )\det(P)}}}},円\exp \!\left\{-{\frac {1}{2}}{\begin{bmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{bmatrix}}^{\mathrm {H} }{\begin{bmatrix}\Gamma &C\\{\overline {C}}&{\overline {\Gamma }}\end{bmatrix}}^{\!\!-1}\!{\begin{bmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{bmatrix}}\right\}\\[8pt]&={\tfrac {\sqrt {\det \left({\overline {P^{-1}}}-R^{\ast }P^{-1}R\right)\det(P^{-1})}}{\pi ^{n}}},円e^{-(z-\mu )^{\ast }{\overline {P^{-1}}}(z-\mu )+\operatorname {Re} \left((z-\mu )^{\intercal }R^{\intercal }{\overline {P^{-1}}}(z-\mu )\right)},\end{aligned}}}
where {\displaystyle R=C^{\mathrm {H} }\Gamma ^{-1}} and {\displaystyle P={\overline {\Gamma }}-RC}.
Characteristic function
[edit ]The characteristic function of complex normal distribution is given by[5]
- {\displaystyle \varphi (w)=\exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}},}
where the argument {\displaystyle w} is an n-dimensional complex vector.
Properties
[edit ]- If {\displaystyle \mathbf {Z} } is a complex normal n-vector, {\displaystyle {\boldsymbol {A}}} an ×ばつn matrix, and {\displaystyle b} a constant m-vector, then the linear transform {\displaystyle {\boldsymbol {A}}\mathbf {Z} +b} will be distributed also complex-normally:
- {\displaystyle Z\ \sim \ {\mathcal {CN}}(\mu ,,円\Gamma ,,円C)\quad \Rightarrow \quad AZ+b\ \sim \ {\mathcal {CN}}(A\mu +b,,円A\Gamma A^{\mathrm {H} },,円ACA^{\mathrm {T} })}
- If {\displaystyle \mathbf {Z} } is a complex normal n-vector, then
- {\displaystyle 2{\Big [}(\mathbf {Z} -\mu )^{\mathrm {H} }{\overline {P^{-1}}}(\mathbf {Z} -\mu )-\operatorname {Re} {\big (}(\mathbf {Z} -\mu )^{\mathrm {T} }R^{\mathrm {T} }{\overline {P^{-1}}}(\mathbf {Z} -\mu ){\big )}{\Big ]}\ \sim \ \chi ^{2}(2n)}
- Central limit theorem. If {\displaystyle Z_{1},\ldots ,Z_{T}} are independent and identically distributed complex random variables, then
- {\displaystyle {\sqrt {T}}{\Big (}{\tfrac {1}{T}}\textstyle \sum _{t=1}^{T}Z_{t}-\operatorname {E} [Z_{t}]{\Big )}\ \xrightarrow {d} \ {\mathcal {CN}}(0,,円\Gamma ,,円C),}
- where {\displaystyle \Gamma =\operatorname {E} [ZZ^{\mathrm {H} }]} and {\displaystyle C=\operatorname {E} [ZZ^{\mathrm {T} }]}.
- The modulus of a complex normal random variable follows a Hoyt distribution.[6]
Circularly-symmetric central case
[edit ]Definition
[edit ]A complex random vector {\displaystyle \mathbf {Z} } is called circularly symmetric if for every deterministic {\displaystyle \varphi \in [-\pi ,\pi )} the distribution of {\displaystyle e^{\mathrm {i} \varphi }\mathbf {Z} } equals the distribution of {\displaystyle \mathbf {Z} }.[4] : pp. 500–501
Central normal complex random vectors that are circularly symmetric are of particular interest because they are fully specified by the covariance matrix {\displaystyle \Gamma }.
The circularly-symmetric (central) complex normal distribution corresponds to the case of zero mean and zero relation matrix, i.e. {\displaystyle \mu =0} and {\displaystyle C=0}.[3] : p. 507 [7] This is usually denoted
- {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,,円\Gamma )}
Distribution of real and imaginary parts
[edit ]If {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} } is circularly-symmetric (central) complex normal, then the vector {\displaystyle [\mathbf {X} ,\mathbf {Y} ]} is multivariate normal with covariance structure
- {\displaystyle {\begin{pmatrix}\mathbf {X} \\\mathbf {Y} \end{pmatrix}}\ \sim \ {\mathcal {N}}{\Big (}{\begin{bmatrix}0\0円\end{bmatrix}},\ {\tfrac {1}{2}}{\begin{bmatrix}\operatorname {Re} ,円\Gamma &-\operatorname {Im} ,円\Gamma \\\operatorname {Im} ,円\Gamma &\operatorname {Re} ,円\Gamma \end{bmatrix}}{\Big )}}
where {\displaystyle \Gamma =\operatorname {E} [\mathbf {Z} \mathbf {Z} ^{\mathrm {H} }]}.
Probability density function
[edit ]For nonsingular covariance matrix {\displaystyle \Gamma }, its distribution can also be simplified as[3] : p. 508
- {\displaystyle f_{\mathbf {Z} }(\mathbf {z} )={\tfrac {1}{\pi ^{n}\det(\Gamma )}},円e^{-(\mathbf {z} -\mathbf {\mu } )^{\mathrm {H} }\Gamma ^{-1}(\mathbf {z} -\mathbf {\mu } )}}.
Therefore, if the non-zero mean {\displaystyle \mu } and covariance matrix {\displaystyle \Gamma } are unknown, a suitable log likelihood function for a single observation vector {\displaystyle z} would be
- {\displaystyle \ln(L(\mu ,\Gamma ))=-\ln(\det(\Gamma ))-{\overline {(z-\mu )}}'\Gamma ^{-1}(z-\mu )-n\ln(\pi ).}
The standard complex normal (defined in Eq.1 ) corresponds to the distribution of a scalar random variable with {\displaystyle \mu =0}, {\displaystyle C=0} and {\displaystyle \Gamma =1}. Thus, the standard complex normal distribution has density
- {\displaystyle f_{Z}(z)={\tfrac {1}{\pi }}e^{-{\overline {z}}z}={\tfrac {1}{\pi }}e^{-|z|^{2}}.}
Properties
[edit ]The above expression demonstrates why the case {\displaystyle C=0}, {\displaystyle \mu =0} is called "circularly-symmetric". The density function depends only on the magnitude of {\displaystyle z} but not on its argument. As such, the magnitude {\displaystyle |z|} of a standard complex normal random variable will have the Rayleigh distribution and the squared magnitude {\displaystyle |z|^{2}} will have the exponential distribution, whereas the argument will be distributed uniformly on {\displaystyle [-\pi ,\pi ]}.
If {\displaystyle \left\{\mathbf {Z} _{1},\ldots ,\mathbf {Z} _{k}\right\}} are independent and identically distributed n-dimensional circular complex normal random vectors with {\displaystyle \mu =0}, then the random squared norm
- {\displaystyle Q=\sum _{j=1}^{k}\mathbf {Z} _{j}^{\mathrm {H} }\mathbf {Z} _{j}=\sum _{j=1}^{k}\|\mathbf {Z} _{j}\|^{2}}
has the generalized chi-squared distribution and the random matrix
- {\displaystyle W=\sum _{j=1}^{k}\mathbf {Z} _{j}\mathbf {Z} _{j}^{\mathrm {H} }}
has the complex Wishart distribution with {\displaystyle k} degrees of freedom. This distribution can be described by density function
- {\displaystyle f(w)={\frac {\det(\Gamma ^{-1})^{k}\det(w)^{k-n}}{\pi ^{n(n-1)/2}\prod _{j=1}^{k}(k-j)!}}\ e^{-\operatorname {tr} (\Gamma ^{-1}w)}}
where {\displaystyle k\geq n}, and {\displaystyle w} is a {\displaystyle n\times n} nonnegative-definite matrix.
See also
[edit ]- Complex normal ratio distribution
- Directional statistics § Distribution of the mean (polar form)
- Normal distribution
- Multivariate normal distribution (a complex normal distribution is a bivariate normal distribution)
- Generalized chi-squared distribution
- Wishart distribution
- Complex random variable
References
[edit ]- ^ Goodman, N.R. (1963). "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)". The Annals of Mathematical Statistics. 34 (1): 152–177. doi:10.1214/aoms/1177704250 . JSTOR 2991290.
- ^ bookchapter, Gallager.R, pg9.
- ^ a b c d e f Lapidoth, A. (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 9780521193955.
- ^ a b c d Tse, David (2005). Fundamentals of Wireless Communication. Cambridge University Press. ISBN 9781139444668.
- ^ a b c Picinbono, Bernard (1996). "Second-order complex random vectors and normal distributions". IEEE Transactions on Signal Processing. 44 (10): 2637–2640. Bibcode:1996ITSP...44.2637P. doi:10.1109/78.539051.
- ^ Daniel Wollschlaeger. "The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2)".[permanent dead link ]
- ^ bookchapter, Gallager.R