Jump to content
Wikipedia The Free Encyclopedia

Complex normal distribution

From Wikipedia, the free encyclopedia
Statistical distribution of complex random variables
Complex normal
Parameters

μ C n {\displaystyle \mathbf {\mu } \in \mathbb {C} ^{n}} {\displaystyle \mathbf {\mu } \in \mathbb {C} ^{n}}location
Γ C n × n {\displaystyle \Gamma \in \mathbb {C} ^{n\times n}} {\displaystyle \Gamma \in \mathbb {C} ^{n\times n}}covariance matrix (positive semi-definite matrix)

C C n × n {\displaystyle C\in \mathbb {C} ^{n\times n}} {\displaystyle C\in \mathbb {C} ^{n\times n}}relation matrix (complex symmetric matrix)
Support C n {\displaystyle \mathbb {C} ^{n}} {\displaystyle \mathbb {C} ^{n}}
PDF complicated, see text
Mean μ {\displaystyle \mathbf {\mu } } {\displaystyle \mathbf {\mu } }
Mode μ {\displaystyle \mathbf {\mu } } {\displaystyle \mathbf {\mu } }
Variance Γ {\displaystyle \Gamma } {\displaystyle \Gamma }
CF exp { i Re ( w ¯ μ ) 1 4 ( w ¯ Γ w + Re ( w ¯ C w ¯ ) ) } {\displaystyle \exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}}} {\displaystyle \exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}}}

In probability theory, the family of complex normal distributions, denoted C N {\displaystyle {\mathcal {CN}}} {\displaystyle {\mathcal {CN}}} or N C {\displaystyle {\mathcal {N}}_{\mathcal {C}}} {\displaystyle {\mathcal {N}}_{\mathcal {C}}}, characterizes complex random variables whose real and imaginary parts are jointly normal.[1] The complex normal family has three parameters: location parameter μ, covariance matrix Γ {\displaystyle \Gamma } {\displaystyle \Gamma }, and the relation matrix C {\displaystyle C} {\displaystyle C}. The standard complex normal is the univariate distribution with μ = 0 {\displaystyle \mu =0} {\displaystyle \mu =0}, Γ = 1 {\displaystyle \Gamma =1} {\displaystyle \Gamma =1}, and C = 0 {\displaystyle C=0} {\displaystyle C=0}.

An important subclass of complex normal family is called the circularly-symmetric (central) complex normal and corresponds to the case of zero relation matrix and zero mean: μ = 0 {\displaystyle \mu =0} {\displaystyle \mu =0} and C = 0 {\displaystyle C=0} {\displaystyle C=0}.[2] This case is used extensively in signal processing, where it is sometimes referred to as just complex normal in the literature.

Definitions

[edit ]

Complex standard normal random variable

[edit ]

The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable Z {\displaystyle Z} {\displaystyle Z} whose real and imaginary parts are independent normally distributed random variables with mean zero and variance 1 / 2 {\displaystyle 1/2} {\displaystyle 1/2}.[3] : p. 494 [4] : pp. 501  Formally,

Z C N ( 0 , 1 ) ( Z ) ( Z )  and  ( Z ) N ( 0 , 1 / 2 )  and  ( Z ) N ( 0 , 1 / 2 ) {\displaystyle Z\sim {\mathcal {CN}}(0,1)\quad \iff \quad \Re (Z)\perp \!\!\!\perp \Im (Z){\text{ and }}\Re (Z)\sim {\mathcal {N}}(0,1/2){\text{ and }}\Im (Z)\sim {\mathcal {N}}(0,1/2)} {\displaystyle Z\sim {\mathcal {CN}}(0,1)\quad \iff \quad \Re (Z)\perp \!\!\!\perp \Im (Z){\text{ and }}\Re (Z)\sim {\mathcal {N}}(0,1/2){\text{ and }}\Im (Z)\sim {\mathcal {N}}(0,1/2)} Eq.1

where Z C N ( 0 , 1 ) {\displaystyle Z\sim {\mathcal {CN}}(0,1)} {\displaystyle Z\sim {\mathcal {CN}}(0,1)} denotes that Z {\displaystyle Z} {\displaystyle Z} is a standard complex normal random variable.

Complex normal random variable

[edit ]

Suppose X {\displaystyle X} {\displaystyle X} and Y {\displaystyle Y} {\displaystyle Y} are real random variables such that ( X , Y ) T {\displaystyle (X,Y)^{\mathrm {T} }} {\displaystyle (X,Y)^{\mathrm {T} }} is a 2-dimensional normal random vector. Then the complex random variable Z = X + i Y {\displaystyle Z=X+iY} {\displaystyle Z=X+iY} is called complex normal random variable or complex Gaussian random variable.[3] : p. 500 

Z  complex normal random variable ( ( Z ) , ( Z ) ) T  real normal random vector {\displaystyle Z{\text{ complex normal random variable}}\quad \iff \quad (\Re (Z),\Im (Z))^{\mathrm {T} }{\text{ real normal random vector}}} {\displaystyle Z{\text{ complex normal random variable}}\quad \iff \quad (\Re (Z),\Im (Z))^{\mathrm {T} }{\text{ real normal random vector}}} Eq.2

Complex standard normal random vector

[edit ]

A n-dimensional complex random vector Z = ( Z 1 , , Z n ) T {\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }} {\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{n})^{\mathrm {T} }} is a complex standard normal random vector or complex standard Gaussian random vector if its components are independent and all of them are standard complex normal random variables as defined above.[3] : p. 502 [4] : pp. 501  That Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } is a standard complex normal random vector is denoted Z C N ( 0 , I n ) {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,{\boldsymbol {I}}_{n})} {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,{\boldsymbol {I}}_{n})}.

Z C N ( 0 , I n ) ( Z 1 , , Z n )  independent  and for  1 i n : Z i C N ( 0 , 1 ) {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,{\boldsymbol {I}}_{n})\quad \iff (Z_{1},\ldots ,Z_{n}){\text{ independent}}{\text{ and for }}1\leq i\leq n:Z_{i}\sim {\mathcal {CN}}(0,1)} {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,{\boldsymbol {I}}_{n})\quad \iff (Z_{1},\ldots ,Z_{n}){\text{ independent}}{\text{ and for }}1\leq i\leq n:Z_{i}\sim {\mathcal {CN}}(0,1)} Eq.3

Complex normal random vector

[edit ]

If X = ( X 1 , , X n ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\mathrm {T} }} {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{n})^{\mathrm {T} }} and Y = ( Y 1 , , Y n ) T {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\mathrm {T} }} {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\mathrm {T} }} are random vectors in R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}} such that [ X , Y ] {\displaystyle [\mathbf {X} ,\mathbf {Y} ]} {\displaystyle [\mathbf {X} ,\mathbf {Y} ]} is a normal random vector with 2 n {\displaystyle 2n} {\displaystyle 2n} components. Then we say that the complex random vector

Z = X + i Y {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} ,円} {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} ,円}

is a complex normal random vector or a complex Gaussian random vector.

Z  complex normal random vector ( ( Z T ) , ( Z T ) ) T = ( ( Z 1 ) , , ( Z n ) , ( Z 1 ) , , ( Z n ) ) T  real normal random vector {\displaystyle \mathbf {Z} {\text{ complex normal random vector}}\quad \iff \quad (\Re (\mathbf {Z} ^{\mathrm {T} }),\Im (\mathbf {Z} ^{\mathrm {T} }))^{\mathrm {T} }=(\Re (Z_{1}),\ldots ,\Re (Z_{n}),\Im (Z_{1}),\ldots ,\Im (Z_{n}))^{\mathrm {T} }{\text{ real normal random vector}}} {\displaystyle \mathbf {Z} {\text{ complex normal random vector}}\quad \iff \quad (\Re (\mathbf {Z} ^{\mathrm {T} }),\Im (\mathbf {Z} ^{\mathrm {T} }))^{\mathrm {T} }=(\Re (Z_{1}),\ldots ,\Re (Z_{n}),\Im (Z_{1}),\ldots ,\Im (Z_{n}))^{\mathrm {T} }{\text{ real normal random vector}}} Eq.4

Mean, covariance, and relation

[edit ]

The complex Gaussian distribution can be described with 3 parameters:[5]

μ = E [ Z ] , Γ = E [ ( Z μ ) ( Z μ ) H ] , C = E [ ( Z μ ) ( Z μ ) T ] , {\displaystyle \mu =\operatorname {E} [\mathbf {Z} ],\quad \Gamma =\operatorname {E} [(\mathbf {Z} -\mu )({\mathbf {Z} }-\mu )^{\mathrm {H} }],\quad C=\operatorname {E} [(\mathbf {Z} -\mu )(\mathbf {Z} -\mu )^{\mathrm {T} }],} {\displaystyle \mu =\operatorname {E} [\mathbf {Z} ],\quad \Gamma =\operatorname {E} [(\mathbf {Z} -\mu )({\mathbf {Z} }-\mu )^{\mathrm {H} }],\quad C=\operatorname {E} [(\mathbf {Z} -\mu )(\mathbf {Z} -\mu )^{\mathrm {T} }],}

where Z T {\displaystyle \mathbf {Z} ^{\mathrm {T} }} {\displaystyle \mathbf {Z} ^{\mathrm {T} }} denotes matrix transpose of Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} }, and Z H {\displaystyle \mathbf {Z} ^{\mathrm {H} }} {\displaystyle \mathbf {Z} ^{\mathrm {H} }} denotes conjugate transpose.[3] : p. 504 [4] : pp. 500 

Here the location parameter μ {\displaystyle \mu } {\displaystyle \mu } is a n-dimensional complex vector; the covariance matrix Γ {\displaystyle \Gamma } {\displaystyle \Gamma } is Hermitian and non-negative definite; and, the relation matrix or pseudo-covariance matrix C {\displaystyle C} {\displaystyle C} is symmetric. The complex normal random vector Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } can now be denoted as Z     C N ( μ ,   Γ ,   C ) . {\displaystyle \mathbf {Z} \ \sim \ {\mathcal {CN}}(\mu ,\ \Gamma ,\ C).} {\displaystyle \mathbf {Z} \ \sim \ {\mathcal {CN}}(\mu ,\ \Gamma ,\ C).}Moreover, matrices Γ {\displaystyle \Gamma } {\displaystyle \Gamma } and C {\displaystyle C} {\displaystyle C} are such that the matrix

P = Γ ¯ C H Γ 1 C {\displaystyle P={\overline {\Gamma }}-{C}^{\mathrm {H} }\Gamma ^{-1}C} {\displaystyle P={\overline {\Gamma }}-{C}^{\mathrm {H} }\Gamma ^{-1}C}

is also non-negative definite where Γ ¯ {\displaystyle {\overline {\Gamma }}} {\displaystyle {\overline {\Gamma }}} denotes the complex conjugate of Γ {\displaystyle \Gamma } {\displaystyle \Gamma }.[5]

Relationships between covariance matrices

[edit ]

As for any complex random vector, the matrices Γ {\displaystyle \Gamma } {\displaystyle \Gamma } and C {\displaystyle C} {\displaystyle C} can be related to the covariance matrices of X = ( Z ) {\displaystyle \mathbf {X} =\Re (\mathbf {Z} )} {\displaystyle \mathbf {X} =\Re (\mathbf {Z} )} and Y = ( Z ) {\displaystyle \mathbf {Y} =\Im (\mathbf {Z} )} {\displaystyle \mathbf {Y} =\Im (\mathbf {Z} )} via expressions

V X X E [ ( X μ X ) ( X μ X ) T ] = 1 2 Re [ Γ + C ] , V X Y E [ ( X μ X ) ( Y μ Y ) T ] = 1 2 Im [ Γ + C ] , V Y X E [ ( Y μ Y ) ( X μ X ) T ] = 1 2 Im [ Γ + C ] , V Y Y E [ ( Y μ Y ) ( Y μ Y ) T ] = 1 2 Re [ Γ C ] , {\displaystyle {\begin{aligned}&V_{XX}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma +C],\quad V_{XY}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [-\Gamma +C],\\&V_{YX}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [\Gamma +C],\quad ,円V_{YY}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma -C],\end{aligned}}} {\displaystyle {\begin{aligned}&V_{XX}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma +C],\quad V_{XY}\equiv \operatorname {E} [(\mathbf {X} -\mu _{X})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [-\Gamma +C],\\&V_{YX}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {X} -\mu _{X})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Im} [\Gamma +C],\quad ,円V_{YY}\equiv \operatorname {E} [(\mathbf {Y} -\mu _{Y})(\mathbf {Y} -\mu _{Y})^{\mathrm {T} }]={\tfrac {1}{2}}\operatorname {Re} [\Gamma -C],\end{aligned}}}

and conversely

Γ = V X X + V Y Y + i ( V Y X V X Y ) , C = V X X V Y Y + i ( V Y X + V X Y ) . {\displaystyle {\begin{aligned}&\Gamma =V_{XX}+V_{YY}+i(V_{YX}-V_{XY}),\\&C=V_{XX}-V_{YY}+i(V_{YX}+V_{XY}).\end{aligned}}} {\displaystyle {\begin{aligned}&\Gamma =V_{XX}+V_{YY}+i(V_{YX}-V_{XY}),\\&C=V_{XX}-V_{YY}+i(V_{YX}+V_{XY}).\end{aligned}}}

Density function

[edit ]

The probability density function for complex normal distribution can be computed as

f ( z ) = 1 π n det ( Γ ) det ( P ) exp { 1 2 [ z μ z ¯ μ ¯ ] H [ Γ C C ¯ Γ ¯ ] 1 [ z μ z ¯ μ ¯ ] } = det ( P 1 ¯ R P 1 R ) det ( P 1 ) π n e ( z μ ) P 1 ¯ ( z μ ) + Re ( ( z μ ) R P 1 ¯ ( z μ ) ) , {\displaystyle {\begin{aligned}f(z)&={\frac {1}{\pi ^{n}{\sqrt {\det(\Gamma )\det(P)}}}},円\exp \!\left\{-{\frac {1}{2}}{\begin{bmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{bmatrix}}^{\mathrm {H} }{\begin{bmatrix}\Gamma &C\\{\overline {C}}&{\overline {\Gamma }}\end{bmatrix}}^{\!\!-1}\!{\begin{bmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{bmatrix}}\right\}\\[8pt]&={\tfrac {\sqrt {\det \left({\overline {P^{-1}}}-R^{\ast }P^{-1}R\right)\det(P^{-1})}}{\pi ^{n}}},円e^{-(z-\mu )^{\ast }{\overline {P^{-1}}}(z-\mu )+\operatorname {Re} \left((z-\mu )^{\intercal }R^{\intercal }{\overline {P^{-1}}}(z-\mu )\right)},\end{aligned}}} {\displaystyle {\begin{aligned}f(z)&={\frac {1}{\pi ^{n}{\sqrt {\det(\Gamma )\det(P)}}}},円\exp \!\left\{-{\frac {1}{2}}{\begin{bmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{bmatrix}}^{\mathrm {H} }{\begin{bmatrix}\Gamma &C\\{\overline {C}}&{\overline {\Gamma }}\end{bmatrix}}^{\!\!-1}\!{\begin{bmatrix}z-\mu \\{\overline {z}}-{\overline {\mu }}\end{bmatrix}}\right\}\\[8pt]&={\tfrac {\sqrt {\det \left({\overline {P^{-1}}}-R^{\ast }P^{-1}R\right)\det(P^{-1})}}{\pi ^{n}}},円e^{-(z-\mu )^{\ast }{\overline {P^{-1}}}(z-\mu )+\operatorname {Re} \left((z-\mu )^{\intercal }R^{\intercal }{\overline {P^{-1}}}(z-\mu )\right)},\end{aligned}}}

where R = C H Γ 1 {\displaystyle R=C^{\mathrm {H} }\Gamma ^{-1}} {\displaystyle R=C^{\mathrm {H} }\Gamma ^{-1}} and P = Γ ¯ R C {\displaystyle P={\overline {\Gamma }}-RC} {\displaystyle P={\overline {\Gamma }}-RC}.

Characteristic function

[edit ]

The characteristic function of complex normal distribution is given by[5]

φ ( w ) = exp { i Re ( w ¯ μ ) 1 4 ( w ¯ Γ w + Re ( w ¯ C w ¯ ) ) } , {\displaystyle \varphi (w)=\exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}},} {\displaystyle \varphi (w)=\exp \!{\big \{}i\operatorname {Re} ({\overline {w}}'\mu )-{\tfrac {1}{4}}{\big (}{\overline {w}}'\Gamma w+\operatorname {Re} ({\overline {w}}'C{\overline {w}}){\big )}{\big \}},}

where the argument w {\displaystyle w} {\displaystyle w} is an n-dimensional complex vector.

Properties

[edit ]
  • If Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } is a complex normal n-vector, A {\displaystyle {\boldsymbol {A}}} {\displaystyle {\boldsymbol {A}}} an ×ばつn matrix, and b {\displaystyle b} {\displaystyle b} a constant m-vector, then the linear transform A Z + b {\displaystyle {\boldsymbol {A}}\mathbf {Z} +b} {\displaystyle {\boldsymbol {A}}\mathbf {Z} +b} will be distributed also complex-normally:
Z     C N ( μ , Γ , C ) A Z + b     C N ( A μ + b , A Γ A H , A C A T ) {\displaystyle Z\ \sim \ {\mathcal {CN}}(\mu ,,円\Gamma ,,円C)\quad \Rightarrow \quad AZ+b\ \sim \ {\mathcal {CN}}(A\mu +b,,円A\Gamma A^{\mathrm {H} },,円ACA^{\mathrm {T} })} {\displaystyle Z\ \sim \ {\mathcal {CN}}(\mu ,,円\Gamma ,,円C)\quad \Rightarrow \quad AZ+b\ \sim \ {\mathcal {CN}}(A\mu +b,,円A\Gamma A^{\mathrm {H} },,円ACA^{\mathrm {T} })}
  • If Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } is a complex normal n-vector, then
2 [ ( Z μ ) H P 1 ¯ ( Z μ ) Re ( ( Z μ ) T R T P 1 ¯ ( Z μ ) ) ]     χ 2 ( 2 n ) {\displaystyle 2{\Big [}(\mathbf {Z} -\mu )^{\mathrm {H} }{\overline {P^{-1}}}(\mathbf {Z} -\mu )-\operatorname {Re} {\big (}(\mathbf {Z} -\mu )^{\mathrm {T} }R^{\mathrm {T} }{\overline {P^{-1}}}(\mathbf {Z} -\mu ){\big )}{\Big ]}\ \sim \ \chi ^{2}(2n)} {\displaystyle 2{\Big [}(\mathbf {Z} -\mu )^{\mathrm {H} }{\overline {P^{-1}}}(\mathbf {Z} -\mu )-\operatorname {Re} {\big (}(\mathbf {Z} -\mu )^{\mathrm {T} }R^{\mathrm {T} }{\overline {P^{-1}}}(\mathbf {Z} -\mu ){\big )}{\Big ]}\ \sim \ \chi ^{2}(2n)}
  • Central limit theorem. If Z 1 , , Z T {\displaystyle Z_{1},\ldots ,Z_{T}} {\displaystyle Z_{1},\ldots ,Z_{T}} are independent and identically distributed complex random variables, then
T ( 1 T t = 1 T Z t E [ Z t ] )   d   C N ( 0 , Γ , C ) , {\displaystyle {\sqrt {T}}{\Big (}{\tfrac {1}{T}}\textstyle \sum _{t=1}^{T}Z_{t}-\operatorname {E} [Z_{t}]{\Big )}\ {\xrightarrow {d}}\ {\mathcal {CN}}(0,,円\Gamma ,,円C),} {\displaystyle {\sqrt {T}}{\Big (}{\tfrac {1}{T}}\textstyle \sum _{t=1}^{T}Z_{t}-\operatorname {E} [Z_{t}]{\Big )}\ \xrightarrow {d} \ {\mathcal {CN}}(0,,円\Gamma ,,円C),}
where Γ = E [ Z Z H ] {\displaystyle \Gamma =\operatorname {E} [ZZ^{\mathrm {H} }]} {\displaystyle \Gamma =\operatorname {E} [ZZ^{\mathrm {H} }]} and C = E [ Z Z T ] {\displaystyle C=\operatorname {E} [ZZ^{\mathrm {T} }]} {\displaystyle C=\operatorname {E} [ZZ^{\mathrm {T} }]}.

Circularly-symmetric central case

[edit ]

Definition

[edit ]

A complex random vector Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} } is called circularly symmetric if for every deterministic φ [ π , π ) {\displaystyle \varphi \in [-\pi ,\pi )} {\displaystyle \varphi \in [-\pi ,\pi )} the distribution of e i φ Z {\displaystyle e^{\mathrm {i} \varphi }\mathbf {Z} } {\displaystyle e^{\mathrm {i} \varphi }\mathbf {Z} } equals the distribution of Z {\displaystyle \mathbf {Z} } {\displaystyle \mathbf {Z} }.[4] : pp. 500–501 

Central normal complex random vectors that are circularly symmetric are of particular interest because they are fully specified by the covariance matrix Γ {\displaystyle \Gamma } {\displaystyle \Gamma }.

The circularly-symmetric (central) complex normal distribution corresponds to the case of zero mean and zero relation matrix, i.e. μ = 0 {\displaystyle \mu =0} {\displaystyle \mu =0} and C = 0 {\displaystyle C=0} {\displaystyle C=0}.[3] : p. 507 [7] This is usually denoted

Z C N ( 0 , Γ ) {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,,円\Gamma )} {\displaystyle \mathbf {Z} \sim {\mathcal {CN}}(0,,円\Gamma )}

Distribution of real and imaginary parts

[edit ]

If Z = X + i Y {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} } {\displaystyle \mathbf {Z} =\mathbf {X} +i\mathbf {Y} } is circularly-symmetric (central) complex normal, then the vector [ X , Y ] {\displaystyle [\mathbf {X} ,\mathbf {Y} ]} {\displaystyle [\mathbf {X} ,\mathbf {Y} ]} is multivariate normal with covariance structure

( X Y )     N ( [ 0 0 ] ,   1 2 [ Re Γ Im Γ Im Γ Re Γ ] ) {\displaystyle {\begin{pmatrix}\mathbf {X} \\\mathbf {Y} \end{pmatrix}}\ \sim \ {\mathcal {N}}{\Big (}{\begin{bmatrix}0\0円\end{bmatrix}},\ {\tfrac {1}{2}}{\begin{bmatrix}\operatorname {Re} ,円\Gamma &-\operatorname {Im} ,円\Gamma \\\operatorname {Im} ,円\Gamma &\operatorname {Re} ,円\Gamma \end{bmatrix}}{\Big )}} {\displaystyle {\begin{pmatrix}\mathbf {X} \\\mathbf {Y} \end{pmatrix}}\ \sim \ {\mathcal {N}}{\Big (}{\begin{bmatrix}0\0円\end{bmatrix}},\ {\tfrac {1}{2}}{\begin{bmatrix}\operatorname {Re} ,円\Gamma &-\operatorname {Im} ,円\Gamma \\\operatorname {Im} ,円\Gamma &\operatorname {Re} ,円\Gamma \end{bmatrix}}{\Big )}}

where Γ = E [ Z Z H ] {\displaystyle \Gamma =\operatorname {E} [\mathbf {Z} \mathbf {Z} ^{\mathrm {H} }]} {\displaystyle \Gamma =\operatorname {E} [\mathbf {Z} \mathbf {Z} ^{\mathrm {H} }]}.

Probability density function

[edit ]

For nonsingular covariance matrix Γ {\displaystyle \Gamma } {\displaystyle \Gamma }, its distribution can also be simplified as[3] : p. 508 

f Z ( z ) = 1 π n det ( Γ ) e ( z μ ) H Γ 1 ( z μ ) {\displaystyle f_{\mathbf {Z} }(\mathbf {z} )={\tfrac {1}{\pi ^{n}\det(\Gamma )}},円e^{-(\mathbf {z} -\mathbf {\mu } )^{\mathrm {H} }\Gamma ^{-1}(\mathbf {z} -\mathbf {\mu } )}} {\displaystyle f_{\mathbf {Z} }(\mathbf {z} )={\tfrac {1}{\pi ^{n}\det(\Gamma )}},円e^{-(\mathbf {z} -\mathbf {\mu } )^{\mathrm {H} }\Gamma ^{-1}(\mathbf {z} -\mathbf {\mu } )}}.

Therefore, if the non-zero mean μ {\displaystyle \mu } {\displaystyle \mu } and covariance matrix Γ {\displaystyle \Gamma } {\displaystyle \Gamma } are unknown, a suitable log likelihood function for a single observation vector z {\displaystyle z} {\displaystyle z} would be

ln ( L ( μ , Γ ) ) = ln ( det ( Γ ) ) ( z μ ) ¯ Γ 1 ( z μ ) n ln ( π ) . {\displaystyle \ln(L(\mu ,\Gamma ))=-\ln(\det(\Gamma ))-{\overline {(z-\mu )}}'\Gamma ^{-1}(z-\mu )-n\ln(\pi ).} {\displaystyle \ln(L(\mu ,\Gamma ))=-\ln(\det(\Gamma ))-{\overline {(z-\mu )}}'\Gamma ^{-1}(z-\mu )-n\ln(\pi ).}

The standard complex normal (defined in Eq.1 ) corresponds to the distribution of a scalar random variable with μ = 0 {\displaystyle \mu =0} {\displaystyle \mu =0}, C = 0 {\displaystyle C=0} {\displaystyle C=0} and Γ = 1 {\displaystyle \Gamma =1} {\displaystyle \Gamma =1}. Thus, the standard complex normal distribution has density

f Z ( z ) = 1 π e z ¯ z = 1 π e | z | 2 . {\displaystyle f_{Z}(z)={\tfrac {1}{\pi }}e^{-{\overline {z}}z}={\tfrac {1}{\pi }}e^{-|z|^{2}}.} {\displaystyle f_{Z}(z)={\tfrac {1}{\pi }}e^{-{\overline {z}}z}={\tfrac {1}{\pi }}e^{-|z|^{2}}.}

Properties

[edit ]

The above expression demonstrates why the case C = 0 {\displaystyle C=0} {\displaystyle C=0}, μ = 0 {\displaystyle \mu =0} {\displaystyle \mu =0} is called "circularly-symmetric". The density function depends only on the magnitude of z {\displaystyle z} {\displaystyle z} but not on its argument. As such, the magnitude | z | {\displaystyle |z|} {\displaystyle |z|} of a standard complex normal random variable will have the Rayleigh distribution and the squared magnitude | z | 2 {\displaystyle |z|^{2}} {\displaystyle |z|^{2}} will have the exponential distribution, whereas the argument will be distributed uniformly on [ π , π ] {\displaystyle [-\pi ,\pi ]} {\displaystyle [-\pi ,\pi ]}.

If { Z 1 , , Z k } {\displaystyle \left\{\mathbf {Z} _{1},\ldots ,\mathbf {Z} _{k}\right\}} {\displaystyle \left\{\mathbf {Z} _{1},\ldots ,\mathbf {Z} _{k}\right\}} are independent and identically distributed n-dimensional circular complex normal random vectors with μ = 0 {\displaystyle \mu =0} {\displaystyle \mu =0}, then the random squared norm

Q = j = 1 k Z j H Z j = j = 1 k Z j 2 {\displaystyle Q=\sum _{j=1}^{k}\mathbf {Z} _{j}^{\mathrm {H} }\mathbf {Z} _{j}=\sum _{j=1}^{k}\|\mathbf {Z} _{j}\|^{2}} {\displaystyle Q=\sum _{j=1}^{k}\mathbf {Z} _{j}^{\mathrm {H} }\mathbf {Z} _{j}=\sum _{j=1}^{k}\|\mathbf {Z} _{j}\|^{2}}

has the generalized chi-squared distribution and the random matrix

W = j = 1 k Z j Z j H {\displaystyle W=\sum _{j=1}^{k}\mathbf {Z} _{j}\mathbf {Z} _{j}^{\mathrm {H} }} {\displaystyle W=\sum _{j=1}^{k}\mathbf {Z} _{j}\mathbf {Z} _{j}^{\mathrm {H} }}

has the complex Wishart distribution with k {\displaystyle k} {\displaystyle k} degrees of freedom. This distribution can be described by density function

f ( w ) = det ( Γ 1 ) k det ( w ) k n π n ( n 1 ) / 2 j = 1 k ( k j ) !   e tr ( Γ 1 w ) {\displaystyle f(w)={\frac {\det(\Gamma ^{-1})^{k}\det(w)^{k-n}}{\pi ^{n(n-1)/2}\prod _{j=1}^{k}(k-j)!}}\ e^{-\operatorname {tr} (\Gamma ^{-1}w)}} {\displaystyle f(w)={\frac {\det(\Gamma ^{-1})^{k}\det(w)^{k-n}}{\pi ^{n(n-1)/2}\prod _{j=1}^{k}(k-j)!}}\ e^{-\operatorname {tr} (\Gamma ^{-1}w)}}

where k n {\displaystyle k\geq n} {\displaystyle k\geq n}, and w {\displaystyle w} {\displaystyle w} is a n × n {\displaystyle n\times n} {\displaystyle n\times n} nonnegative-definite matrix.

See also

[edit ]

References

[edit ]
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (July 2011) (Learn how and when to remove this message)
  1. ^ Goodman, N.R. (1963). "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)". The Annals of Mathematical Statistics. 34 (1): 152–177. doi:10.1214/aoms/1177704250 . JSTOR 2991290.
  2. ^ bookchapter, Gallager.R, pg9.
  3. ^ a b c d e f Lapidoth, A. (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 9780521193955.
  4. ^ a b c d Tse, David (2005). Fundamentals of Wireless Communication. Cambridge University Press. ISBN 9781139444668.
  5. ^ a b c Picinbono, Bernard (1996). "Second-order complex random vectors and normal distributions". IEEE Transactions on Signal Processing. 44 (10): 2637–2640. Bibcode:1996ITSP...44.2637P. doi:10.1109/78.539051.
  6. ^ Daniel Wollschlaeger. "The Hoyt Distribution (Documentation for R package 'shotGroups' version 0.6.2)".[permanent dead link ]
  7. ^ bookchapter, Gallager.R
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /