Gompertz distribution
Probability density function | |||
Cumulative distribution function | |||
Parameters | shape {\displaystyle \eta >0,円\!}, scale {\displaystyle b>0,円\!} | ||
---|---|---|---|
Support | {\displaystyle x\in [0,\infty )\!} | ||
{\displaystyle b\eta \exp \left(\eta +bx-\eta e^{bx}\right)} | |||
CDF | {\displaystyle 1-\exp \left(-\eta \left(e^{bx}-1\right)\right)} | ||
Quantile | {\displaystyle {\frac {1}{b}}\ln \left(1-{\frac {1}{\eta }}\ln(1-u)\right)} | ||
Mean |
{\displaystyle (1/b)e^{\eta }{\text{Ei}}\left(-\eta \right)} {\displaystyle {\text{where Ei}}\left(z\right)=\int \limits _{-z}^{\infty }\left(e^{-v}/v\right)dv} | ||
Median | {\displaystyle \left(1/b\right)\ln \left[\left(1/\eta \right)\ln \left(1/2\right)+1\right]} | ||
Mode |
{\displaystyle =\left(1/b\right)\ln \left(1/\eta \right)\ } {\displaystyle {\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121,0<\eta <1} {\displaystyle =0,\quad \eta \geq 1} | ||
Variance |
{\displaystyle \left(1/b\right)^{2}e^{\eta }\{-2\eta {\ }_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;\eta \right)+\gamma ^{2}}{\displaystyle +\left(\pi ^{2}/6\right)+2\gamma \ln \left(\eta \right)+[\ln \left(\eta \right)]^{2}-e^{\eta }[{\text{Ei}}\left(-\eta \right)]^{2}\}} {\displaystyle {\begin{aligned}{\text{ where }}&\gamma {\text{ is the Euler constant: }},円\!\\&\gamma =-\psi \left(1\right)={\text{0.577215... }}\end{aligned}}}{\displaystyle {\begin{aligned}{\text{ and }}{}_{3}{\text{F}}_{3}&\left(1,1,1;2,2,2;-z\right)=\\&\sum _{k=0}^{\infty }\left[1/\left(k+1\right)^{3}\right]\left(-1\right)^{k}\left(z^{k}/k!\right)\end{aligned}}} | ||
MGF |
{\displaystyle {\text{E}}\left(e^{-tx}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)} {\displaystyle {\text{with E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0} |
In probability and statistics, the Gompertz distribution is a continuous probability distribution, named after Benjamin Gompertz. The Gompertz distribution is often applied to describe the distribution of adult lifespans by demographers [1] [2] and actuaries.[3] [4] Related fields of science such as biology[5] and gerontology[6] also considered the Gompertz distribution for the analysis of survival. More recently, computer scientists have also started to model the failure rates of computer code by the Gompertz distribution.[7] In Marketing Science, it has been used as an individual-level simulation for customer lifetime value modeling.[8] In network theory, particularly the Erdős–Rényi model, the walk length of a random self-avoiding walk (SAW) is distributed according to the Gompertz distribution.[9]
Specification
[edit ]Probability density function
[edit ]The probability density function of the Gompertz distribution is:
- {\displaystyle f\left(x;\eta ,b\right)=b\eta \exp \left(\eta +bx-\eta e^{bx}\right){\text{for }}x\geq 0,,円}
where {\displaystyle b>0,円\!} is the scale parameter and {\displaystyle \eta >0,円\!} is the shape parameter of the Gompertz distribution. In the actuarial and biological sciences and in demography, the Gompertz distribution is parametrized slightly differently (Gompertz–Makeham law of mortality).
Cumulative distribution function
[edit ]The cumulative distribution function of the Gompertz distribution is:
- {\displaystyle F\left(x;\eta ,b\right)=1-\exp \left(-\eta \left(e^{bx}-1\right)\right),}
where {\displaystyle \eta ,b>0,} and {\displaystyle x\geq 0,円.}
Moment generating function
[edit ]The moment generating function is:
- {\displaystyle {\text{E}}\left(e^{-tX}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}
where
- {\displaystyle {\text{E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0.}
Properties
[edit ]The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left. Its hazard function {\displaystyle h(x)=\eta be^{bx}} is a convex function of {\displaystyle F\left(x;\eta ,b\right)}. The model can be fitted into the innovation-imitation paradigm with {\displaystyle p=\eta b} as the coefficient of innovation and {\displaystyle b} as the coefficient of imitation. When {\displaystyle t} becomes large, {\displaystyle z(t)} approaches {\displaystyle \infty }. The model can also belong to the propensity-to-adopt paradigm with {\displaystyle \eta } as the propensity to adopt and {\displaystyle b} as the overall appeal of the new offering.
Shapes
[edit ]The Gompertz density function can take on different shapes depending on the values of the shape parameter {\displaystyle \eta ,円\!}:
- When {\displaystyle \eta \geq 1,,円} the probability density function has its mode at 0.
- When {\displaystyle 0<\eta <1,,円} the probability density function has its mode at
- {\displaystyle x^{*}=\left(1/b\right)\ln \left(1/\eta \right){\text{with }}0<F\left(x^{*}\right)<1-e^{-1}=0.632121}
Kullback-Leibler divergence
[edit ]If {\displaystyle f_{1}} and {\displaystyle f_{2}} are the probability density functions of two Gompertz distributions, then their Kullback-Leibler divergence is given by
- {\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;b_{1},\eta _{1}),円\ln {\frac {f_{1}(x;b_{1},\eta _{1})}{f_{2}(x;b_{2},\eta _{2})}}dx\\&=\ln {\frac {e^{\eta _{1}},円b_{1},円\eta _{1}}{e^{\eta _{2}},円b_{2},円\eta _{2}}}+e^{\eta _{1}}\left[\left({\frac {b_{2}}{b_{1}}}-1\right),円\operatorname {Ei} (-\eta _{1})+{\frac {\eta _{2}}{\eta _{1}^{\frac {b_{2}}{b_{1}}}}},円\Gamma \left({\frac {b_{2}}{b_{1}}}+1,\eta _{1}\right)\right]-(\eta _{1}+1)\end{aligned}}}
where {\displaystyle \operatorname {Ei} (\cdot )} denotes the exponential integral and {\displaystyle \Gamma (\cdot ,\cdot )} is the upper incomplete gamma function.[10]
Related distributions
[edit ]- If X is defined to be the result of sampling from a Gumbel distribution until a negative value Y is produced, and setting X=−Y, then X has a Gompertz distribution.
- The gamma distribution is a natural conjugate prior to a Gompertz likelihood with known scale parameter {\displaystyle b,円\!.}[8]
- When {\displaystyle \eta ,円\!} varies according to a gamma distribution with shape parameter {\displaystyle \alpha ,円\!} and scale parameter {\displaystyle \beta ,円\!} (mean = {\displaystyle \alpha /\beta ,円\!}), the distribution of {\displaystyle x} is Gamma/Gompertz.[8]
- If {\displaystyle Y\sim \mathrm {Gompertz} }, then {\displaystyle X=\exp(Y)\sim \mathrm {Weibull} ^{-1}}, and hence {\displaystyle \exp(-Y)\sim \mathrm {Weibull} }.[12]
Applications
[edit ]- In hydrology the Gompertz distribution is applied to extreme events such as annual maximum one-day rainfalls and river discharges. The blue picture illustrates an example of fitting the Gompertz distribution to ranked annually maximum one-day rainfalls showing also the 90% confidence belt based on the binomial distribution. The rainfall data are represented by plotting positions as part of the cumulative frequency analysis.
See also
[edit ]- Gompertz-Makeham law of mortality
- Gompertz function
- Customer lifetime value
- Gamma Gompertz distribution
Notes
[edit ]- ^ Vaupel, James W. (1986). "How change in age-specific mortality affects life expectancy" (PDF). Population Studies. 40 (1): 147–157. doi:10.1080/0032472031000141896. PMID 11611920.
- ^ Preston, Samuel H.; Heuveline, Patrick; Guillot, Michel (2001). Demography:measuring and modeling population processes. Oxford: Blackwell.
- ^ Benjamin, Bernard; Haycocks, H.W.; Pollard, J. (1980). The Analysis of Mortality and Other Actuarial Statistics. London: Heinemann.
- ^ Willemse, W. J.; Koppelaar, H. (2000). "Knowledge elicitation of Gompertz' law of mortality". Scandinavian Actuarial Journal. 2000 (2): 168–179. doi:10.1080/034612300750066845. S2CID 122719776.
- ^ Economos, A. (1982). "Rate of aging, rate of dying and the mechanism of mortality". Archives of Gerontology and Geriatrics. 1 (1): 46–51. doi:10.1016/0167-4943(82)90003-6. PMID 6821142.
- ^ Brown, K.; Forbes, W. (1974). "A mathematical model of aging processes". Journal of Gerontology. 29 (1): 46–51. doi:10.1093/geronj/29.1.46. PMID 4809664.
- ^ Ohishi, K.; Okamura, H.; Dohi, T. (2009). "Gompertz software reliability model: estimation algorithm and empirical validation". Journal of Systems and Software. 82 (3): 535–543. doi:10.1016/j.jss.200811840.
- ^ a b c Bemmaor, Albert C.; Glady, Nicolas (2012). "Modeling Purchasing Behavior With Sudden 'Death': A Flexible Customer Lifetime Model". Management Science. 58 (5): 1012–1021. doi:10.1287/mnsc.1110.1461.
- ^ Tishby, Biham, Katzav (2016), The distribution of path lengths of self avoiding walks on Erdős-Rényi networks, arXiv:1603.06613.
- ^ Bauckhage, C. (2014), Characterizations and Kullback-Leibler Divergence of Gompertz Distributions, arXiv:1402.3193.
- ^ Calculator for probability distribution fitting [1]
- ^ Kleiber, Christian; Kotz, Samuel (2003). Statistical Size Distributions in Economics and Actuarial Sciences. Wiley. p. 179. doi:10.1002/0471457175. ISBN 9780471150640.
References
[edit ]- Bemmaor, Albert C.; Glady, Nicolas (2011). "Implementing the Gamma/Gompertz/NBD Model in MATLAB" (PDF). Cergy-Pontoise: ESSEC Business School.[permanent dead link ]
- Gompertz, B. (1825). "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies". Philosophical Transactions of the Royal Society of London. 115: 513–583. doi:10.1098/rstl.1825.0026 . JSTOR 107756. S2CID 145157003.
- Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1995). Continuous Univariate Distributions. Vol. 2 (2nd ed.). New York: John Wiley & Sons. pp. 25–26. ISBN 0-471-58494-0.
- Sheikh, A. K.; Boah, J. K.; Younas, M. (1989). "Truncated Extreme Value Model for Pipeline Reliability". Reliability Engineering and System Safety. 25 (1): 1–14. doi:10.1016/0951-8320(89)90020-3.