Jump to content
Wikipedia The Free Encyclopedia

Nakagami distribution

From Wikipedia, the free encyclopedia
Statistical distribution
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Nakagami distribution" – news · newspapers · books · scholar · JSTOR
(April 2013) (Learn how and when to remove this message)
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (April 2013) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Nakagami
Probability density function
Cumulative distribution function
Parameters m  or  μ 0.5 {\displaystyle m{\text{ or }}\mu \geq 0.5} {\displaystyle m{\text{ or }}\mu \geq 0.5} shape (real)
Ω  or  ω > 0 {\displaystyle \Omega {\text{ or }}\omega >0} {\displaystyle \Omega {\text{ or }}\omega >0} scale (real)
Support x > 0 {\displaystyle x>0\!} {\displaystyle x>0\!}
PDF 2 m m Γ ( m ) Ω m x 2 m 1 exp ( m Ω x 2 ) {\displaystyle {\frac {2m^{m}}{\Gamma (m)\Omega ^{m}}}x^{2m-1}\exp \left(-{\frac {m}{\Omega }}x^{2}\right)} {\displaystyle {\frac {2m^{m}}{\Gamma (m)\Omega ^{m}}}x^{2m-1}\exp \left(-{\frac {m}{\Omega }}x^{2}\right)}
CDF γ ( m , m Ω x 2 ) Γ ( m ) {\displaystyle {\frac {\gamma \left(m,{\frac {m}{\Omega }}x^{2}\right)}{\Gamma (m)}}} {\displaystyle {\frac {\gamma \left(m,{\frac {m}{\Omega }}x^{2}\right)}{\Gamma (m)}}}
Mean Γ ( m + 1 2 ) Γ ( m ) ( Ω m ) 1 / 2 {\displaystyle {\frac {\Gamma (m+{\frac {1}{2}})}{\Gamma (m)}}\left({\frac {\Omega }{m}}\right)^{1/2}} {\displaystyle {\frac {\Gamma (m+{\frac {1}{2}})}{\Gamma (m)}}\left({\frac {\Omega }{m}}\right)^{1/2}}
Median No simple closed form
Mode ( ( 2 m 1 ) Ω 2 m ) 1 / 2 {\displaystyle \left({\frac {(2m-1)\Omega }{2m}}\right)^{1/2}} {\displaystyle \left({\frac {(2m-1)\Omega }{2m}}\right)^{1/2}}
Variance Ω ( 1 1 m ( Γ ( m + 1 2 ) Γ ( m ) ) 2 ) {\displaystyle \Omega \left(1-{\frac {1}{m}}\left({\frac {\Gamma (m+{\frac {1}{2}})}{\Gamma (m)}}\right)^{2}\right)} {\displaystyle \Omega \left(1-{\frac {1}{m}}\left({\frac {\Gamma (m+{\frac {1}{2}})}{\Gamma (m)}}\right)^{2}\right)}

The Nakagami distribution or the Nakagami-m distribution is a probability distribution related to the gamma distribution. The family of Nakagami distributions has two parameters: a shape parameter m 1 / 2 {\displaystyle m\geq 1/2} {\displaystyle m\geq 1/2} and a scale parameter Ω > 0 {\displaystyle \Omega >0} {\displaystyle \Omega >0}. It is used to model physical phenomena such as those found in medical ultrasound imaging, communications engineering, meteorology, hydrology, multimedia, and seismology.

Characterization

[edit ]

Its probability density function (pdf) is[1]

f ( x ; m , Ω ) = 2 m m Γ ( m ) Ω m x 2 m 1 exp ( m Ω x 2 )  for  x 0. {\displaystyle f(x;,円m,\Omega )={\frac {2m^{m}}{\Gamma (m)\Omega ^{m}}}x^{2m-1}\exp \left(-{\frac {m}{\Omega }}x^{2}\right){\text{ for }}x\geq 0.} {\displaystyle f(x;,円m,\Omega )={\frac {2m^{m}}{\Gamma (m)\Omega ^{m}}}x^{2m-1}\exp \left(-{\frac {m}{\Omega }}x^{2}\right){\text{ for }}x\geq 0.}

where m 1 / 2 {\displaystyle m\geq 1/2} {\displaystyle m\geq 1/2} and Ω > 0 {\displaystyle \Omega >0} {\displaystyle \Omega >0}.

Its cumulative distribution function (CDF) is[1]

F ( x ; m , Ω ) = γ ( m , m Ω x 2 ) Γ ( m ) = P ( m , m Ω x 2 ) {\displaystyle F(x;,円m,\Omega )={\frac {\gamma \left(m,{\frac {m}{\Omega }}x^{2}\right)}{\Gamma (m)}}=P\left(m,{\frac {m}{\Omega }}x^{2}\right)} {\displaystyle F(x;,円m,\Omega )={\frac {\gamma \left(m,{\frac {m}{\Omega }}x^{2}\right)}{\Gamma (m)}}=P\left(m,{\frac {m}{\Omega }}x^{2}\right)}

where P is the regularized (lower) incomplete gamma function.

Parameterization

[edit ]

The parameters m {\displaystyle m} {\displaystyle m} and Ω {\displaystyle \Omega } {\displaystyle \Omega } are[2]

m = ( E [ X 2 ] ) 2 Var [ X 2 ] , {\displaystyle m={\frac {\left(\operatorname {E} [X^{2}]\right)^{2}}{\operatorname {Var} [X^{2}]}},} {\displaystyle m={\frac {\left(\operatorname {E} [X^{2}]\right)^{2}}{\operatorname {Var} [X^{2}]}},}

and

Ω = E [ X 2 ] . {\displaystyle \Omega =\operatorname {E} [X^{2}].} {\displaystyle \Omega =\operatorname {E} [X^{2}].}

No closed form solution exists for the median of this distribution, although special cases do exist, such as Ω ln ( 2 ) {\displaystyle {\sqrt {\Omega \ln(2)}}} {\displaystyle {\sqrt {\Omega \ln(2)}}} when m = 1. For practical purposes the median would have to be calculated as the 50th-percentile of the observations.

Parameter estimation

[edit ]

An alternative way of fitting the distribution is to re-parametrize Ω {\displaystyle \Omega } {\displaystyle \Omega } as σ = Ω/m.[3]

Given independent observations X 1 = x 1 , , X n = x n {\textstyle X_{1}=x_{1},\ldots ,X_{n}=x_{n}} {\textstyle X_{1}=x_{1},\ldots ,X_{n}=x_{n}} from the Nakagami distribution, the likelihood function is

L ( σ , m ) = ( 2 Γ ( m ) σ m ) n ( i = 1 n x i ) 2 m 1 exp ( i = 1 n x i 2 σ ) . {\displaystyle L(\sigma ,m)=\left({\frac {2}{\Gamma (m)\sigma ^{m}}}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{2m-1}\exp \left(-{\frac {\sum _{i=1}^{n}x_{i}^{2}}{\sigma }}\right).} {\displaystyle L(\sigma ,m)=\left({\frac {2}{\Gamma (m)\sigma ^{m}}}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{2m-1}\exp \left(-{\frac {\sum _{i=1}^{n}x_{i}^{2}}{\sigma }}\right).}

Its logarithm is

( σ , m ) = log L ( σ , m ) = n log Γ ( m ) n m log σ + ( 2 m 1 ) i = 1 n log x i i = 1 n x i 2 σ . {\displaystyle \ell (\sigma ,m)=\log L(\sigma ,m)=-n\log \Gamma (m)-nm\log \sigma +(2m-1)\sum _{i=1}^{n}\log x_{i}-{\frac {\sum _{i=1}^{n}x_{i}^{2}}{\sigma }}.} {\displaystyle \ell (\sigma ,m)=\log L(\sigma ,m)=-n\log \Gamma (m)-nm\log \sigma +(2m-1)\sum _{i=1}^{n}\log x_{i}-{\frac {\sum _{i=1}^{n}x_{i}^{2}}{\sigma }}.}

Therefore

σ = n m σ + i = 1 n x i 2 σ 2 and m = n Γ ( m ) Γ ( m ) n log σ + 2 i = 1 n log x i . {\displaystyle {\begin{aligned}{\frac {\partial \ell }{\partial \sigma }}={\frac {-nm\sigma +\sum _{i=1}^{n}x_{i}^{2}}{\sigma ^{2}}}\quad {\text{and}}\quad {\frac {\partial \ell }{\partial m}}=-n{\frac {\Gamma '(m)}{\Gamma (m)}}-n\log \sigma +2\sum _{i=1}^{n}\log x_{i}.\end{aligned}}} {\displaystyle {\begin{aligned}{\frac {\partial \ell }{\partial \sigma }}={\frac {-nm\sigma +\sum _{i=1}^{n}x_{i}^{2}}{\sigma ^{2}}}\quad {\text{and}}\quad {\frac {\partial \ell }{\partial m}}=-n{\frac {\Gamma '(m)}{\Gamma (m)}}-n\log \sigma +2\sum _{i=1}^{n}\log x_{i}.\end{aligned}}}

These derivatives vanish only when

σ = i = 1 n x i 2 n m {\displaystyle \sigma ={\frac {\sum _{i=1}^{n}x_{i}^{2}}{nm}}} {\displaystyle \sigma ={\frac {\sum _{i=1}^{n}x_{i}^{2}}{nm}}}

and the value of m for which the derivative with respect to m vanishes is found by numerical methods including the Newton–Raphson method.

It can be shown that at the critical point a global maximum is attained, so the critical point is the maximum-likelihood estimate of (m,σ). Because of the equivariance of maximum-likelihood estimation, a maximum likelihood estimate for Ω is obtained as well.

Random variate generation

[edit ]

The Nakagami distribution is related to the gamma distribution. In particular, given a random variable Y Gamma ( k , θ ) {\displaystyle Y,円\sim {\textrm {Gamma}}(k,\theta )} {\displaystyle Y,円\sim {\textrm {Gamma}}(k,\theta )}, it is possible to obtain a random variable X Nakagami ( m , Ω ) {\displaystyle X,円\sim {\textrm {Nakagami}}(m,\Omega )} {\displaystyle X,円\sim {\textrm {Nakagami}}(m,\Omega )}, by setting k = m {\displaystyle k=m} {\displaystyle k=m}, θ = Ω / m {\displaystyle \theta =\Omega /m} {\displaystyle \theta =\Omega /m}, and taking the square root of Y {\displaystyle Y} {\displaystyle Y}:

X = Y . {\displaystyle X={\sqrt {Y}}.,円} {\displaystyle X={\sqrt {Y}}.,円}

Alternatively, the Nakagami distribution f ( y ; m , Ω ) {\displaystyle f(y;,円m,\Omega )} {\displaystyle f(y;,円m,\Omega )} can be generated from the chi distribution with parameter k {\displaystyle k} {\displaystyle k} set to 2 m {\displaystyle 2m} {\displaystyle 2m} and then following it by a scaling transformation of random variables. That is, a Nakagami random variable X {\displaystyle X} {\displaystyle X} is generated by a simple scaling transformation on a chi-distributed random variable Y χ ( 2 m ) {\displaystyle Y\sim \chi (2m)} {\displaystyle Y\sim \chi (2m)} as below.

X = ( Ω / 2 m ) Y . {\displaystyle X={\sqrt {(\Omega /2m)}}Y.} {\displaystyle X={\sqrt {(\Omega /2m)}}Y.}

For a chi-distribution, the degrees of freedom 2 m {\displaystyle 2m} {\displaystyle 2m} must be an integer, but for Nakagami the m {\displaystyle m} {\displaystyle m} can be any real number greater than 1/2. This is the critical difference and accordingly, Nakagami-m is viewed as a generalization of chi-distribution, similar to a gamma distribution being considered as a generalization of chi-squared distributions.

History and applications

[edit ]

The Nakagami distribution is relatively new, being first proposed in 1960 by Minoru Nakagami as a mathematical model for small-scale fading in long-distance high-frequency radio wave propagation.[4] It has been used to model attenuation of wireless signals traversing multiple paths [5] and to study the impact of fading channels on wireless communications.[6]

[edit ]

See also

[edit ]

References

[edit ]
  1. ^ a b Laurenson, Dave (1994). "Nakagami Distribution". Indoor Radio Channel Propagation Modelling by Ray Tracing Techniques. Retrieved 2007年08月04日.
  2. ^ R. Kolar, R. Jirik, J. Jan (2004) "Estimator Comparison of the Nakagami-m Parameter and Its Application in Echocardiography", Radioengineering, 13 (1), 8–12
  3. ^ Mitra, Rangeet; Mishra, Amit Kumar; Choubisa, Tarun (2012). "Maximum Likelihood Estimate of Parameters of Nakagami-m Distribution". International Conference on Communications, Devices and Intelligent Systems (CODIS), 2012: 9–12.
  4. ^ Nakagami, M. (1960) "The m-Distribution, a general formula of intensity of rapid fading". In William C. Hoffman, editor, Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held June 18–20, 1958, pp. 3–36. Pergamon Press., doi:10.1016/B978-0-08-009306-2.50005-4
  5. ^ Parsons, J. D. (1992) The Mobile Radio Propagation Channel. New York: Wiley.
  6. ^ Ramon Sanchez-Iborra; Maria-Dolores Cano; Joan Garcia-Haro (2013). "Performance evaluation of QoE in VoIP traffic under fading channels". 2013 World Congress on Computer and Information Technology (WCCIT). pp. 1–6. doi:10.1109/WCCIT.2013.6618721. ISBN 978-1-4799-0462-4. S2CID 16810288.
  7. ^ Paris, J.F. (2009). "Nakagami-q (Hoyt) distribution function with applications". Electronics Letters. 45 (4): 210–211. Bibcode:2009ElL....45..210P. doi:10.1049/el:20093427.
  8. ^ "HoytDistribution".
  9. ^ "NakagamiDistribution".
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /