Kaniadakis Gaussian distribution
| κ-Gaussian distribution | |||
|---|---|---|---|
|
Probability density function | |||
|
Cumulative distribution function | |||
| Parameters |
{\displaystyle 0<\kappa <1} shape (real) {\displaystyle \beta >0} rate (real) | ||
| Support | {\displaystyle x\in \mathbb {R} } | ||
| {\displaystyle Z_{\kappa }\exp _{\kappa }(-\beta x^{2}),円,円,円;,円,円,円Z_{\kappa }={\sqrt {\frac {2\beta \kappa }{\pi }}}{\Bigg (}1+{\frac {1}{2}}\kappa {\Bigg )}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}}} | |||
| CDF | {\displaystyle {\frac {1}{2}}+{\frac {1}{2}}{\textrm {erf}}_{\kappa }{\big (}{\sqrt {\beta }}x{\big )}\ } | ||
| Mean | {\displaystyle 0} | ||
| Median | {\displaystyle 0} | ||
| Mode | {\displaystyle 0} | ||
| Variance | {\displaystyle \sigma _{\kappa }^{2}={\frac {1}{\beta }}{\frac {2+\kappa }{2-\kappa }}{\frac {4\kappa }{4-9\kappa ^{2}}}\left[{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}}\right]^{2}} | ||
| Skewness | {\displaystyle 0} | ||
| Excess kurtosis | {\displaystyle 3\left[{\frac {{\sqrt {\pi }}Z_{\kappa }}{2\beta ^{2/3}\sigma _{\kappa }^{4}}}{\frac {(2\kappa )^{-5/2}}{1+{\frac {5}{2}}\kappa }}{\frac {\Gamma \left({\frac {1}{2\kappa }}-{\frac {5}{4}}\right)}{\Gamma \left({\frac {1}{2\kappa }}+{\frac {5}{4}}\right)}}-1\right]} | ||
The Kaniadakis Gaussian distribution (also known as κ-Gaussian distribution) is a probability distribution which arises as a generalization of the Gaussian distribution from the maximization of the Kaniadakis entropy under appropriated constraints. It is one example of a Kaniadakis κ-distribution. The κ-Gaussian distribution has been applied successfully for describing several complex systems in economy,[1] geophysics,[2] astrophysics, among many others.
The κ-Gaussian distribution is a particular case of the κ-Generalized Gamma distribution.[3]
Definitions
[edit ]Probability density function
[edit ]The general form of the centered Kaniadakis κ-Gaussian probability density function is:[3]
- {\displaystyle f_{_{\kappa }}(x)=Z_{\kappa }\exp _{\kappa }(-\beta x^{2})}
where {\displaystyle |\kappa |<1} is the entropic index associated with the Kaniadakis entropy, {\displaystyle \beta >0} is the scale parameter, and
- {\displaystyle Z_{\kappa }={\sqrt {\frac {2\beta \kappa }{\pi }}}{\Bigg (}1+{\frac {1}{2}}\kappa {\Bigg )}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}}}
is the normalization constant.
The standard Normal distribution is recovered in the limit {\displaystyle \kappa \rightarrow 0.}
Cumulative distribution function
[edit ]The cumulative distribution function of κ-Gaussian distribution is given by
{\displaystyle F_{\kappa }(x)={\frac {1}{2}}+{\frac {1}{2}}{\textrm {erf}}_{\kappa }{\big (}{\sqrt {\beta }}x{\big )}}
where
{\displaystyle {\textrm {erf}}_{\kappa }(x)={\Big (}2+\kappa {\Big )}{\sqrt {\frac {2\kappa }{\pi }}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}}\int _{0}^{x}\exp _{\kappa }(-t^{2})dt}
is the Kaniadakis κ-Error function, which is a generalization of the ordinary Error function {\displaystyle {\textrm {erf}}(x)} as {\displaystyle \kappa \rightarrow 0}.
Properties
[edit ]Moments, mean and variance
[edit ]The centered κ-Gaussian distribution has a moment of odd order equal to zero, including the mean.
The variance is finite for {\displaystyle \kappa <2/3} and is given by:
- {\displaystyle \operatorname {Var} [X]=\sigma _{\kappa }^{2}={\frac {1}{\beta }}{\frac {2+\kappa }{2-\kappa }}{\frac {4\kappa }{4-9\kappa ^{2}}}\left[{\frac {\Gamma \left({\frac {1}{2\kappa }}+{\frac {1}{4}}\right)}{\Gamma \left({\frac {1}{2\kappa }}-{\frac {1}{4}}\right)}}\right]^{2}}
Kurtosis
[edit ]The kurtosis of the centered κ-Gaussian distribution may be computed thought:
- {\displaystyle \operatorname {Kurt} [X]=\operatorname {E} \left[{\frac {X^{4}}{\sigma _{\kappa }^{4}}}\right]}
which can be written as
{\displaystyle \operatorname {Kurt} [X]={\frac {2Z_{\kappa }}{\sigma _{\kappa }^{4}}}\int _{0}^{\infty }x^{4},円\exp _{\kappa }\left(-\beta x^{2}\right)dx}
Thus, the kurtosis of the centered κ-Gaussian distribution is given by:
{\displaystyle \operatorname {Kurt} [X]={\frac {3{\sqrt {\pi }}Z_{\kappa }}{2\beta ^{2/3}\sigma _{\kappa }^{4}}}{\frac {|2\kappa |^{-5/2}}{1+{\frac {5}{2}}|\kappa |}}{\frac {\Gamma \left({\frac {1}{|2\kappa |}}-{\frac {5}{4}}\right)}{\Gamma \left({\frac {1}{|2\kappa |}}+{\frac {5}{4}}\right)}}}
or
{\displaystyle \operatorname {Kurt} [X]={\frac {3\beta ^{11/6}{\sqrt {2\kappa }}}{2}}{\frac {|2\kappa |^{-5/2}}{1+{\frac {5}{2}}|\kappa |}}{\Bigg (}1+{\frac {1}{2}}\kappa {\Bigg )}\left({\frac {2-\kappa }{2+\kappa }}\right)^{2}\left({\frac {4-9\kappa ^{2}}{4\kappa }}\right)^{2}\left[{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}}\right]^{3}{\frac {\Gamma \left({\frac {1}{|2\kappa |}}-{\frac {5}{4}}\right)}{\Gamma \left({\frac {1}{|2\kappa |}}+{\frac {5}{4}}\right)}}}
κ-Error function
[edit ]| κ-Error function | |
|---|---|
| Plot of the κ-error function for typical κ-values. The case κ=0 corresponds to the ordinary error function. Plot of the κ-error function for typical κ-values. The case κ=0 corresponds to the ordinary error function. | |
| General information | |
| General definition | {\displaystyle \operatorname {erf} _{\kappa }(x)={\Big (}2+\kappa {\Big )}{\sqrt {\frac {2\kappa }{\pi }}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}}\int _{0}^{x}\exp _{\kappa }(-t^{2})dt} |
| Fields of application | Probability, thermodynamics |
| Domain, codomain and image | |
| Domain | {\displaystyle \mathbb {C} } |
| Image | {\displaystyle \left(-1,1\right)} |
| Specific features | |
| Root | {\displaystyle 0} |
| Derivative | {\displaystyle {\frac {d}{dx}}\operatorname {erf} _{\kappa }(x)=\left(2+\kappa \right){\sqrt {\frac {2\kappa }{\pi }}}{\frac {\Gamma \left({\frac {1}{2\kappa }}+{\frac {1}{4}}\right)}{\Gamma \left({\frac {1}{2\kappa }}-{\frac {1}{4}}\right)}}\exp _{\kappa }(-x^{2})} |
The Kaniadakis κ-Error function (or κ-Error function) is a one-parameter generalization of the ordinary error function defined as:[3]
- {\displaystyle \operatorname {erf} _{\kappa }(x)={\Big (}2+\kappa {\Big )}{\sqrt {\frac {2\kappa }{\pi }}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{4}}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{4}}{\Big )}}}\int _{0}^{x}\exp _{\kappa }(-t^{2})dt}
Although the error function cannot be expressed in terms of elementary functions, numerical approximations are commonly employed.
For a random variable X distributed according to a κ-Gaussian distribution with mean 0 and standard deviation {\displaystyle {\sqrt {\beta }}}, κ-Error function means the probability that X falls in the interval {\displaystyle [-x,,円x]}.
Applications
[edit ]The κ-Gaussian distribution has been applied in several areas, such as:
- In economy, the κ-Gaussian distribution has been applied in the analysis of financial models, accurately representing the dynamics of the processes of extreme changes in stock prices.[4]
- In inverse problems, Error laws in extreme statistics are robustly represented by κ-Gaussian distributions.[2] [5] [6]
- In astrophysics, stellar-residual-radial-velocity data have a Gaussian-type statistical distribution, in which the K index presents a strong relationship with the stellar-cluster ages.[7] [8]
- In nuclear physics, the study of Doppler broadening function in nuclear reactors is well described by a κ-Gaussian distribution for analyzing the neutron-nuclei interaction.[9] [10]
- In cosmology, for interpreting the dynamical evolution of the Friedmann–Robertson–Walker Universe.
- In plasmas physics, for analyzing the electron distribution in electron-acoustic double-layers [11] and the dispersion of Langmuir waves.[12]
See also
[edit ]- Giorgio Kaniadakis
- Kaniadakis statistics
- Kaniadakis distribution
- Kaniadakis κ-Exponential distribution
- Kaniadakis κ-Gamma distribution
- Kaniadakis κ-Weibull distribution
- Kaniadakis κ-Logistic distribution
- Kaniadakis κ-Erlang distribution
References
[edit ]- ^ Moretto, Enrico; Pasquali, Sara; Trivellato, Barbara (2017). "A non-Gaussian option pricing model based on Kaniadakis exponential deformation" . The European Physical Journal B. 90 (10): 179. Bibcode:2017EPJB...90..179M. doi:10.1140/epjb/e2017-80112-x. ISSN 1434-6028. S2CID 254116243.
- ^ a b da Silva, Sérgio Luiz E. F.; Carvalho, Pedro Tiago C.; de Araújo, João M.; Corso, Gilberto (2020年05月27日). "Full-waveform inversion based on Kaniadakis statistics" . Physical Review E. 101 (5) 053311. Bibcode:2020PhRvE.101e3311D. doi:10.1103/PhysRevE.101.053311. ISSN 2470-0045. PMID 32575242. S2CID 219746493.
- ^ a b c Kaniadakis, G. (2021年01月01日). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1) 10002. arXiv:2203.01743 . Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
- ^ Moretto, Enrico; Pasquali, Sara; Trivellato, Barbara (2017). "A non-Gaussian option pricing model based on Kaniadakis exponential deformation" . The European Physical Journal B. 90 (10): 179. Bibcode:2017EPJB...90..179M. doi:10.1140/epjb/e2017-80112-x. ISSN 1434-6028. S2CID 254116243.
- ^ Wada, Tatsuaki; Suyari, Hiroki (2006). "κ-generalization of Gauss' law of error". Physics Letters A. 348 (3–6): 89–93. arXiv:cond-mat/0505313 . Bibcode:2006PhLA..348...89W. doi:10.1016/j.physleta.2005年08月08日6. S2CID 119003351.
- ^ da Silva, Sérgio Luiz E.F.; Silva, R.; dos Santos Lima, Gustavo Z.; de Araújo, João M.; Corso, Gilberto (2022). "An outlier-resistant κ -generalized approach for robust physical parameter estimation". Physica A: Statistical Mechanics and Its Applications. 600 127554. arXiv:2111.09921 . Bibcode:2022PhyA..60027554D. doi:10.1016/j.physa.2022.127554. S2CID 248803855.
- ^ Carvalho, J. C.; Silva, R.; do Nascimento jr., J. D.; Soares, B. B.; De Medeiros, J. R. (2010年09月01日). "Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics" . EPL (Europhysics Letters). 91 (6) 69002. Bibcode:2010EL.....9169002C. doi:10.1209/0295-5075/91/69002. ISSN 0295-5075. S2CID 120902898.
- ^ Carvalho, J. C.; Silva, R.; do Nascimento jr., J. D.; De Medeiros, J. R. (2008). "Power law statistics and stellar rotational velocities in the Pleiades". EPL (Europhysics Letters). 84 (5) 59001. arXiv:0903.0836 . Bibcode:2008EL.....8459001C. doi:10.1209/0295-5075/84/59001. ISSN 0295-5075. S2CID 7123391.
- ^ Guedes, Guilherme; Gonçalves, Alessandro C.; Palma, Daniel A.P. (2017). "The Doppler Broadening Function using the Kaniadakis distribution" . Annals of Nuclear Energy. 110: 453–458. doi:10.1016/j.anucene.2017年06月05日7.
- ^ de Abreu, Willian V.; Gonçalves, Alessandro C.; Martinez, Aquilino S. (2019). "Analytical solution for the Doppler broadening function using the Kaniadakis distribution" . Annals of Nuclear Energy. 126: 262–268. doi:10.1016/j.anucene.2018年11月02日3. S2CID 125724227.
- ^ Gougam, Leila Ait; Tribeche, Mouloud (2016). "Electron-acoustic waves in a plasma with a κ -deformed Kaniadakis electron distribution" . Physics of Plasmas. 23 (1): 014501. Bibcode:2016PhPl...23a4501G. doi:10.1063/1.4939477. ISSN 1070-664X.
- ^ Chen, H.; Zhang, S. X.; Liu, S. Q. (2017). "The longitudinal plasmas modes of κ -deformed Kaniadakis distributed plasmas" . Physics of Plasmas. 24 (2): 022125. Bibcode:2017PhPl...24b2125C. doi:10.1063/1.4976992. ISSN 1070-664X.