Jump to content
Wikipedia The Free Encyclopedia

Kaniadakis Erlang distribution

From Wikipedia, the free encyclopedia
The topic of this article may not meet Wikipedia's general notability guideline . Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Kaniadakis Erlang distribution" – news · newspapers · books · scholar · JSTOR
(February 2023) (Learn how and when to remove this message)
This article relies largely or entirely on a single source . Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Kaniadakis Erlang distribution" – news · newspapers · books · scholar · JSTOR
(August 2022)
Continuous probability distribution
κ-Erlang distribution
Probability density function
Plot of the κ-Erlang distribution for typical κ-values and n=1, 2,3. The case κ=0 corresponds to the ordinary Erlang distribution.
Parameters 0 κ < 1 {\displaystyle 0\leq \kappa <1} {\displaystyle 0\leq \kappa <1}
n = positive integer {\displaystyle n={\textrm {positive}},円,円{\textrm {integer}}} {\displaystyle n={\textrm {positive}},円,円{\textrm {integer}}}
Support x [ 0 , + ) {\displaystyle x\in [0,+\infty )} {\displaystyle x\in [0,+\infty )}
PDF m = 0 n [ 1 + ( 2 m n ) κ ] x n 1 ( n 1 ) ! exp κ ( x ) {\displaystyle \prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]{\frac {x^{n-1}}{(n-1)!}}\exp _{\kappa }(-x)} {\displaystyle \prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]{\frac {x^{n-1}}{(n-1)!}}\exp _{\kappa }(-x)}
CDF 1 ( n 1 ) ! m = 0 n [ 1 + ( 2 m n ) κ ] 0 x z n 1 exp κ ( z ) d z {\displaystyle {\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz} {\displaystyle {\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}

The Kaniadakis Erlang distribution (or κ-Erlang Gamma distribution) is a family of continuous statistical distributions, which is a particular case of the κ-Gamma distribution, when α = 1 {\displaystyle \alpha =1} {\displaystyle \alpha =1} and ν = n = {\displaystyle \nu =n=} {\displaystyle \nu =n=} positive integer.[1] The first member of this family is the κ-exponential distribution of Type I. The κ-Erlang is a κ-deformed version of the Erlang distribution. It is one example of a Kaniadakis distribution.

Characterization

[edit ]

Probability density function

[edit ]

The Kaniadakis κ-Erlang distribution has the following probability density function:[1]

f κ ( x ) = 1 ( n 1 ) ! m = 0 n [ 1 + ( 2 m n ) κ ] x n 1 exp κ ( x ) {\displaystyle f_{_{\kappa }}(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]x^{n-1}\exp _{\kappa }(-x)} {\displaystyle f_{_{\kappa }}(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]x^{n-1}\exp _{\kappa }(-x)}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0} and n = positive integer {\displaystyle n={\textrm {positive}},円,円{\textrm {integer}}} {\displaystyle n={\textrm {positive}},円,円{\textrm {integer}}}, where 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} {\displaystyle 0\leq |\kappa |<1} is the entropic index associated with the Kaniadakis entropy.

The ordinary Erlang Distribution is recovered as κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

Cumulative distribution function

[edit ]

The cumulative distribution function of κ-Erlang distribution assumes the form:[1]

F κ ( x ) = 1 ( n 1 ) ! m = 0 n [ 1 + ( 2 m n ) κ ] 0 x z n 1 exp κ ( z ) d z {\displaystyle F_{\kappa }(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz} {\displaystyle F_{\kappa }(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}, where 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} {\displaystyle 0\leq |\kappa |<1}. The cumulative Erlang distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

Survival distribution and hazard functions

[edit ]

The survival function of the κ-Erlang distribution is given by:

S κ ( x ) = 1 1 ( n 1 ) ! m = 0 n [ 1 + ( 2 m n ) κ ] 0 x z n 1 exp κ ( z ) d z {\displaystyle S_{\kappa }(x)=1-{\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz} {\displaystyle S_{\kappa }(x)=1-{\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}

The survival function of the κ-Erlang distribution enables the determination of hazard functions in closed form through the solution of the κ-rate equation:

S κ ( x ) d x = h κ S κ ( x ) {\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)} {\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)}

where h κ {\displaystyle h_{\kappa }} {\displaystyle h_{\kappa }} is the hazard function.

Family distribution

[edit ]

A family of κ-distributions arises from the κ-Erlang distribution, each associated with a specific value of n {\displaystyle n} {\displaystyle n}, valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0} and 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} {\displaystyle 0\leq |\kappa |<1}. Such members are determined from the κ-Erlang cumulative distribution, which can be rewritten as:

F κ ( x ) = 1 [ R κ ( x ) + Q κ ( x ) 1 + κ 2 x 2 ] exp κ ( x ) {\displaystyle F_{\kappa }(x)=1-\left[R_{\kappa }(x)+Q_{\kappa }(x){\sqrt {1+\kappa ^{2}x^{2}}}\right]\exp _{\kappa }(-x)} {\displaystyle F_{\kappa }(x)=1-\left[R_{\kappa }(x)+Q_{\kappa }(x){\sqrt {1+\kappa ^{2}x^{2}}}\right]\exp _{\kappa }(-x)}

where

Q κ ( x ) = N κ m = 0 n 3 ( m + 1 ) c m + 1 x m + N κ 1 n 2 κ 2 x n 1 {\displaystyle Q_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n-3}\left(m+1\right)c_{m+1}x^{m}+{\frac {N_{\kappa }}{1-n^{2}\kappa ^{2}}}x^{n-1}} {\displaystyle Q_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n-3}\left(m+1\right)c_{m+1}x^{m}+{\frac {N_{\kappa }}{1-n^{2}\kappa ^{2}}}x^{n-1}}
R κ ( x ) = N κ m = 0 n c m x m {\displaystyle R_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n}c_{m}x^{m}} {\displaystyle R_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n}c_{m}x^{m}}

with

N κ = 1 ( n 1 ) ! m = 0 n [ 1 + ( 2 m n ) κ ] {\displaystyle N_{\kappa }={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]} {\displaystyle N_{\kappa }={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]}
c n = n κ 2 1 n 2 κ 2 {\displaystyle c_{n}={\frac {n\kappa ^{2}}{1-n^{2}\kappa ^{2}}}} {\displaystyle c_{n}={\frac {n\kappa ^{2}}{1-n^{2}\kappa ^{2}}}}
c n 1 = 0 {\displaystyle c_{n-1}=0} {\displaystyle c_{n-1}=0}
c n 2 = n 1 ( 1 n 2 κ 2 ) [ 1 ( n 2 ) 2 κ 2 ] {\displaystyle c_{n-2}={\frac {n-1}{(1-n^{2}\kappa ^{2})[1-(n-2)^{2}\kappa ^{2}]}}} {\displaystyle c_{n-2}={\frac {n-1}{(1-n^{2}\kappa ^{2})[1-(n-2)^{2}\kappa ^{2}]}}}
c m = ( m + 1 ) ( m + 2 ) 1 m 2 κ 2 c m + 2 for 0 m n 3 {\displaystyle c_{m}={\frac {(m+1)(m+2)}{1-m^{2}\kappa ^{2}}}c_{m+2}\quad {\textrm {for}}\quad 0\leq m\leq n-3} {\displaystyle c_{m}={\frac {(m+1)(m+2)}{1-m^{2}\kappa ^{2}}}c_{m+2}\quad {\textrm {for}}\quad 0\leq m\leq n-3}

First member

[edit ]

The first member ( n = 1 {\displaystyle n=1} {\displaystyle n=1}) of the κ-Erlang family is the κ-Exponential distribution of type I, in which the probability density function and the cumulative distribution function are defined as:

f κ ( x ) = ( 1 κ 2 ) exp κ ( x ) {\displaystyle f_{_{\kappa }}(x)=(1-\kappa ^{2})\exp _{\kappa }(-x)} {\displaystyle f_{_{\kappa }}(x)=(1-\kappa ^{2})\exp _{\kappa }(-x)}
F κ ( x ) = 1 ( 1 + κ 2 x 2 + κ 2 x ) exp k ( x ) {\displaystyle F_{\kappa }(x)=1-{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa ^{2}x{\Big )}\exp _{k}({-x)}} {\displaystyle F_{\kappa }(x)=1-{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa ^{2}x{\Big )}\exp _{k}({-x)}}

Second member

[edit ]

The second member ( n = 2 {\displaystyle n=2} {\displaystyle n=2}) of the κ-Erlang family has the probability density function and the cumulative distribution function defined as:

f κ ( x ) = ( 1 4 κ 2 ) x exp κ ( x ) {\displaystyle f_{_{\kappa }}(x)=(1-4\kappa ^{2}),円x,円\exp _{\kappa }(-x)} {\displaystyle f_{_{\kappa }}(x)=(1-4\kappa ^{2}),円x,円\exp _{\kappa }(-x)}
F κ ( x ) = 1 ( 2 κ 2 x 2 + 1 + x 1 + κ 2 x 2 ) exp k ( x ) {\displaystyle F_{\kappa }(x)=1-\left(2\kappa ^{2}x^{2}+1+x{\sqrt {1+\kappa ^{2}x^{2}}}\right)\exp _{k}({-x)}} {\displaystyle F_{\kappa }(x)=1-\left(2\kappa ^{2}x^{2}+1+x{\sqrt {1+\kappa ^{2}x^{2}}}\right)\exp _{k}({-x)}}

Third member

[edit ]

The second member ( n = 3 {\displaystyle n=3} {\displaystyle n=3}) has the probability density function and the cumulative distribution function defined as:

f κ ( x ) = 1 2 ( 1 κ 2 ) ( 1 9 κ 2 ) x 2 exp κ ( x ) {\displaystyle f_{_{\kappa }}(x)={\frac {1}{2}}(1-\kappa ^{2})(1-9\kappa ^{2}),円x^{2},円\exp _{\kappa }(-x)} {\displaystyle f_{_{\kappa }}(x)={\frac {1}{2}}(1-\kappa ^{2})(1-9\kappa ^{2}),円x^{2},円\exp _{\kappa }(-x)}
F κ ( x ) = 1 { 3 2 κ 2 ( 1 κ 2 ) x 3 + x + [ 1 + 1 2 ( 1 κ 2 ) x 2 ] 1 + κ 2 x 2 } exp κ ( x ) {\displaystyle F_{\kappa }(x)=1-\left\{{\frac {3}{2}}\kappa ^{2}(1-\kappa ^{2})x^{3}+x+\left[1+{\frac {1}{2}}(1-\kappa ^{2})x^{2}\right]{\sqrt {1+\kappa ^{2}x^{2}}}\right\}\exp _{\kappa }(-x)} {\displaystyle F_{\kappa }(x)=1-\left\{{\frac {3}{2}}\kappa ^{2}(1-\kappa ^{2})x^{3}+x+\left[1+{\frac {1}{2}}(1-\kappa ^{2})x^{2}\right]{\sqrt {1+\kappa ^{2}x^{2}}}\right\}\exp _{\kappa }(-x)}
[edit ]
  • The κ-Exponential distribution of type I is a particular case of the κ-Erlang distribution when n = 1 {\displaystyle n=1} {\displaystyle n=1};
  • A κ-Erlang distribution corresponds to am ordinary exponential distribution when κ = 0 {\displaystyle \kappa =0} {\displaystyle \kappa =0} and n = 1 {\displaystyle n=1} {\displaystyle n=1};

See also

[edit ]

References

[edit ]
[edit ]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /