Kaniadakis Erlang distribution
Find sources: "Kaniadakis Erlang distribution" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)
Find sources: "Kaniadakis Erlang distribution" – news · newspapers · books · scholar · JSTOR (August 2022)
Probability density function Plot of the κ-Erlang distribution for typical κ-values and n=1, 2,3. The case κ=0 corresponds to the ordinary Erlang distribution. | |||
Parameters |
{\displaystyle 0\leq \kappa <1} {\displaystyle n={\textrm {positive}},円,円{\textrm {integer}}} | ||
---|---|---|---|
Support | {\displaystyle x\in [0,+\infty )} | ||
{\displaystyle \prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]{\frac {x^{n-1}}{(n-1)!}}\exp _{\kappa }(-x)} | |||
CDF | {\displaystyle {\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz} |
The Kaniadakis Erlang distribution (or κ-Erlang Gamma distribution) is a family of continuous statistical distributions, which is a particular case of the κ-Gamma distribution, when {\displaystyle \alpha =1} and {\displaystyle \nu =n=} positive integer.[1] The first member of this family is the κ-exponential distribution of Type I. The κ-Erlang is a κ-deformed version of the Erlang distribution. It is one example of a Kaniadakis distribution.
Characterization
[edit ]Probability density function
[edit ]The Kaniadakis κ-Erlang distribution has the following probability density function:[1]
- {\displaystyle f_{_{\kappa }}(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]x^{n-1}\exp _{\kappa }(-x)}
valid for {\displaystyle x\geq 0} and {\displaystyle n={\textrm {positive}},円,円{\textrm {integer}}}, where {\displaystyle 0\leq |\kappa |<1} is the entropic index associated with the Kaniadakis entropy.
The ordinary Erlang Distribution is recovered as {\displaystyle \kappa \rightarrow 0}.
Cumulative distribution function
[edit ]The cumulative distribution function of κ-Erlang distribution assumes the form:[1]
- {\displaystyle F_{\kappa }(x)={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}
valid for {\displaystyle x\geq 0}, where {\displaystyle 0\leq |\kappa |<1}. The cumulative Erlang distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}.
Survival distribution and hazard functions
[edit ]The survival function of the κ-Erlang distribution is given by:
{\displaystyle S_{\kappa }(x)=1-{\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]\int _{0}^{x}z^{n-1}\exp _{\kappa }(-z)dz}
The survival function of the κ-Erlang distribution enables the determination of hazard functions in closed form through the solution of the κ-rate equation:
{\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)}
where {\displaystyle h_{\kappa }} is the hazard function.
Family distribution
[edit ]A family of κ-distributions arises from the κ-Erlang distribution, each associated with a specific value of {\displaystyle n}, valid for {\displaystyle x\geq 0} and {\displaystyle 0\leq |\kappa |<1}. Such members are determined from the κ-Erlang cumulative distribution, which can be rewritten as:
- {\displaystyle F_{\kappa }(x)=1-\left[R_{\kappa }(x)+Q_{\kappa }(x){\sqrt {1+\kappa ^{2}x^{2}}}\right]\exp _{\kappa }(-x)}
where
- {\displaystyle Q_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n-3}\left(m+1\right)c_{m+1}x^{m}+{\frac {N_{\kappa }}{1-n^{2}\kappa ^{2}}}x^{n-1}}
- {\displaystyle R_{\kappa }(x)=N_{\kappa }\sum _{m=0}^{n}c_{m}x^{m}}
with
- {\displaystyle N_{\kappa }={\frac {1}{(n-1)!}}\prod _{m=0}^{n}\left[1+(2m-n)\kappa \right]}
- {\displaystyle c_{n}={\frac {n\kappa ^{2}}{1-n^{2}\kappa ^{2}}}}
- {\displaystyle c_{n-1}=0}
- {\displaystyle c_{n-2}={\frac {n-1}{(1-n^{2}\kappa ^{2})[1-(n-2)^{2}\kappa ^{2}]}}}
- {\displaystyle c_{m}={\frac {(m+1)(m+2)}{1-m^{2}\kappa ^{2}}}c_{m+2}\quad {\textrm {for}}\quad 0\leq m\leq n-3}
First member
[edit ]The first member ({\displaystyle n=1}) of the κ-Erlang family is the κ-Exponential distribution of type I, in which the probability density function and the cumulative distribution function are defined as:
- {\displaystyle f_{_{\kappa }}(x)=(1-\kappa ^{2})\exp _{\kappa }(-x)}
- {\displaystyle F_{\kappa }(x)=1-{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa ^{2}x{\Big )}\exp _{k}({-x)}}
Second member
[edit ]The second member ({\displaystyle n=2}) of the κ-Erlang family has the probability density function and the cumulative distribution function defined as:
- {\displaystyle f_{_{\kappa }}(x)=(1-4\kappa ^{2}),円x,円\exp _{\kappa }(-x)}
- {\displaystyle F_{\kappa }(x)=1-\left(2\kappa ^{2}x^{2}+1+x{\sqrt {1+\kappa ^{2}x^{2}}}\right)\exp _{k}({-x)}}
Third member
[edit ]The second member ({\displaystyle n=3}) has the probability density function and the cumulative distribution function defined as:
- {\displaystyle f_{_{\kappa }}(x)={\frac {1}{2}}(1-\kappa ^{2})(1-9\kappa ^{2}),円x^{2},円\exp _{\kappa }(-x)}
- {\displaystyle F_{\kappa }(x)=1-\left\{{\frac {3}{2}}\kappa ^{2}(1-\kappa ^{2})x^{3}+x+\left[1+{\frac {1}{2}}(1-\kappa ^{2})x^{2}\right]{\sqrt {1+\kappa ^{2}x^{2}}}\right\}\exp _{\kappa }(-x)}
Related distributions
[edit ]- The κ-Exponential distribution of type I is a particular case of the κ-Erlang distribution when {\displaystyle n=1};
- A κ-Erlang distribution corresponds to am ordinary exponential distribution when {\displaystyle \kappa =0} and {\displaystyle n=1};
See also
[edit ]- Giorgio Kaniadakis
- Kaniadakis statistics
- Kaniadakis distribution
- Kaniadakis κ-Exponential distribution
- Kaniadakis κ-Gaussian distribution
- Kaniadakis κ-Gamma distribution
- Kaniadakis κ-Weibull distribution
- Kaniadakis κ-Logistic distribution
References
[edit ]- ^ a b c Kaniadakis, G. (2021年01月01日). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743 . Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.