Jump to content
Wikipedia The Free Encyclopedia

Mixed Poisson distribution

From Wikipedia, the free encyclopedia
Compound probability distribution
mixed Poisson distribution
Notation Pois ( λ ) λ π ( λ ) {\displaystyle \operatorname {Pois} (\lambda ),円{\underset {\lambda }{\wedge }},円\pi (\lambda )} {\displaystyle \operatorname {Pois} (\lambda ),円{\underset {\lambda }{\wedge }},円\pi (\lambda )}
Parameters λ ( 0 , ) {\displaystyle \lambda \in (0,\infty )} {\displaystyle \lambda \in (0,\infty )}
Support k N 0 {\displaystyle k\in \mathbb {N} _{0}} {\displaystyle k\in \mathbb {N} _{0}}
PMF 0 λ k k ! e λ π ( λ ) d λ {\displaystyle \int _{0}^{\infty }{\frac {\lambda ^{k}}{k!}}e^{-\lambda },円,円\pi (\lambda ),円d\lambda } {\displaystyle \int _{0}^{\infty }{\frac {\lambda ^{k}}{k!}}e^{-\lambda },円,円\pi (\lambda ),円d\lambda }
Mean 0 λ π ( λ ) d λ {\displaystyle \int _{0}^{\infty }\lambda ,円,円\pi (\lambda ),円d\lambda } {\displaystyle \int _{0}^{\infty }\lambda ,円,円\pi (\lambda ),円d\lambda }
Variance 0 ( λ + ( λ μ π ) 2 ) π ( λ ) d λ {\displaystyle \int _{0}^{\infty }(\lambda +(\lambda -\mu _{\pi })^{2}),円,円\pi (\lambda ),円d\lambda } {\displaystyle \int _{0}^{\infty }(\lambda +(\lambda -\mu _{\pi })^{2}),円,円\pi (\lambda ),円d\lambda }
Skewness ( μ π + σ π 2 ) 3 / 2 [ 0 [ ( λ μ π ) 3 + 3 ( λ μ π ) 2 ] π ( λ ) d λ + μ π ] {\displaystyle \left(\mu _{\pi }+\sigma _{\pi }^{2}\right)^{-3/2},円\left[\int _{0}^{\infty }\left[{\left(\lambda -\mu _{\pi }\right)}^{3}+3{\left(\lambda -\mu _{\pi }\right)}^{2}\right]\pi (\lambda ),円d\lambda +\mu _{\pi }\right]} {\displaystyle \left(\mu _{\pi }+\sigma _{\pi }^{2}\right)^{-3/2},円\left[\int _{0}^{\infty }\left[{\left(\lambda -\mu _{\pi }\right)}^{3}+3{\left(\lambda -\mu _{\pi }\right)}^{2}\right]\pi (\lambda ),円d\lambda +\mu _{\pi }\right]}
MGF M π ( e t 1 ) {\displaystyle M_{\pi }(e^{t}-1)} {\displaystyle M_{\pi }(e^{t}-1)}, with M π {\displaystyle M_{\pi }} {\displaystyle M_{\pi }} the MGF of π
CF M π ( e i t 1 ) {\displaystyle M_{\pi }(e^{it}-1)} {\displaystyle M_{\pi }(e^{it}-1)}
PGF M π ( z 1 ) {\displaystyle M_{\pi }(z-1)} {\displaystyle M_{\pi }(z-1)}

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model.[1] It should not be confused with compound Poisson distribution or compound Poisson process.[2]

Definition

[edit ]

A random variable X satisfies the mixed Poisson distribution with density π(λ) if it has the probability distribution[3]

P ( X = k ) = 0 λ k k ! e λ π ( λ ) d λ . {\displaystyle \operatorname {P} (X=k)=\int _{0}^{\infty }{\frac {\lambda ^{k}}{k!}}e^{-\lambda },円,円\pi (\lambda ),円d\lambda .} {\displaystyle \operatorname {P} (X=k)=\int _{0}^{\infty }{\frac {\lambda ^{k}}{k!}}e^{-\lambda },円,円\pi (\lambda ),円d\lambda .}

If we denote the probabilities of the Poisson distribution by qλ(k), then

P ( X = k ) = 0 q λ ( k ) π ( λ ) d λ . {\displaystyle \operatorname {P} (X=k)=\int _{0}^{\infty }q_{\lambda }(k),円,円\pi (\lambda ),円d\lambda .} {\displaystyle \operatorname {P} (X=k)=\int _{0}^{\infty }q_{\lambda }(k),円,円\pi (\lambda ),円d\lambda .}

Properties

[edit ]

In the following let μ π = 0 λ π ( λ ) d λ {\displaystyle \mu _{\pi }=\int _{0}^{\infty }\lambda ,円,円\pi (\lambda ),円d\lambda ,円} {\displaystyle \mu _{\pi }=\int _{0}^{\infty }\lambda ,円,円\pi (\lambda ),円d\lambda ,円} be the expected value of the density π ( λ ) {\displaystyle \pi (\lambda ),円} {\displaystyle \pi (\lambda ),円} and σ π 2 = 0 ( λ μ π ) 2 π ( λ ) d λ {\displaystyle \sigma _{\pi }^{2}=\int _{0}^{\infty }(\lambda -\mu _{\pi })^{2},円,円\pi (\lambda ),円d\lambda ,円} {\displaystyle \sigma _{\pi }^{2}=\int _{0}^{\infty }(\lambda -\mu _{\pi })^{2},円,円\pi (\lambda ),円d\lambda ,円} be the variance of the density.

Expected value

[edit ]

The expected value of the mixed Poisson distribution is

E ( X ) = μ π . {\displaystyle \operatorname {E} (X)=\mu _{\pi }.} {\displaystyle \operatorname {E} (X)=\mu _{\pi }.}

Variance

[edit ]

For the variance one gets[3]

Var ( X ) = μ π + σ π 2 . {\displaystyle \operatorname {Var} (X)=\mu _{\pi }+\sigma _{\pi }^{2}.} {\displaystyle \operatorname {Var} (X)=\mu _{\pi }+\sigma _{\pi }^{2}.}

Skewness

[edit ]

The skewness can be represented as

v ( X ) = ( μ π + σ π 2 ) 3 / 2 [ 0 ( λ μ π ) 3 π ( λ ) d λ + μ π ] . {\displaystyle \operatorname {v} (X)={\Bigl (}\mu _{\pi }+\sigma _{\pi }^{2}{\Bigr )}^{-3/2},円{\Biggl [}\int _{0}^{\infty }(\lambda -\mu _{\pi })^{3},円\pi (\lambda ),円d{\lambda }+\mu _{\pi }{\Biggr ]}.} {\displaystyle \operatorname {v} (X)={\Bigl (}\mu _{\pi }+\sigma _{\pi }^{2}{\Bigr )}^{-3/2},円{\Biggl [}\int _{0}^{\infty }(\lambda -\mu _{\pi })^{3},円\pi (\lambda ),円d{\lambda }+\mu _{\pi }{\Biggr ]}.}

Characteristic function

[edit ]

The characteristic function has the form

φ X ( s ) = M π ( e i s 1 ) . {\displaystyle \varphi _{X}(s)=M_{\pi }(e^{is}-1).,円} {\displaystyle \varphi _{X}(s)=M_{\pi }(e^{is}-1).,円}

Where M π {\displaystyle M_{\pi }} {\displaystyle M_{\pi }} is the moment generating function of the density.

Probability generating function

[edit ]

For the probability generating function, one obtains[3]

m X ( s ) = M π ( s 1 ) . {\displaystyle m_{X}(s)=M_{\pi }(s-1).,円} {\displaystyle m_{X}(s)=M_{\pi }(s-1).,円}

Moment-generating function

[edit ]

The moment-generating function of the mixed Poisson distribution is

M X ( s ) = M π ( e s 1 ) . {\displaystyle M_{X}(s)=M_{\pi }(e^{s}-1).,円} {\displaystyle M_{X}(s)=M_{\pi }(e^{s}-1).,円}

Examples

[edit ]

TheoremCompounding a Poisson distribution with rate parameter distributed according to a gamma distribution yields a negative binomial distribution.[3]

Proof

Let π ( λ ) = ( p 1 p ) r Γ ( r ) λ r 1 e p 1 p λ {\displaystyle \pi (\lambda )={\frac {({\frac {p}{1-p}})^{r}}{\Gamma (r)}}\lambda ^{r-1}e^{-{\frac {p}{1-p}}\lambda }} {\displaystyle \pi (\lambda )={\frac {({\frac {p}{1-p}})^{r}}{\Gamma (r)}}\lambda ^{r-1}e^{-{\frac {p}{1-p}}\lambda }} be a density of a Γ ( r , p 1 p ) {\displaystyle \operatorname {\Gamma } \left(r,{\frac {p}{1-p}}\right)} {\displaystyle \operatorname {\Gamma } \left(r,{\frac {p}{1-p}}\right)} distributed random variable.

P ( X = k ) = 1 k ! 0 λ k e λ ( p 1 p ) r Γ ( r ) λ r 1 e p 1 p λ d λ = p r ( 1 p ) r Γ ( r ) k ! 0 λ k + r 1 e λ 1 1 p d λ = p r ( 1 p ) r Γ ( r ) k ! ( 1 p ) k + r 0 λ k + r 1 e λ d λ = Γ ( r + k ) = Γ ( r + k ) Γ ( r ) k ! ( 1 p ) k p r {\displaystyle {\begin{aligned}\operatorname {P} (X=k)&={\frac {1}{k!}}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda }{\frac {({\frac {p}{1-p}})^{r}}{\Gamma (r)}}\lambda ^{r-1}e^{-{\frac {p}{1-p}}\lambda },円d\lambda \\&={\frac {p^{r}(1-p)^{-r}}{\Gamma (r)k!}}\int _{0}^{\infty }\lambda ^{k+r-1}e^{-\lambda {\frac {1}{1-p}}},円d\lambda \\&={\frac {p^{r}(1-p)^{-r}}{\Gamma (r)k!}}(1-p)^{k+r}\underbrace {\int _{0}^{\infty }\lambda ^{k+r-1}e^{-\lambda },円d\lambda } _{=\Gamma (r+k)}\\&={\frac {\Gamma (r+k)}{\Gamma (r)k!}}(1-p)^{k}p^{r}\end{aligned}}} {\displaystyle {\begin{aligned}\operatorname {P} (X=k)&={\frac {1}{k!}}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda }{\frac {({\frac {p}{1-p}})^{r}}{\Gamma (r)}}\lambda ^{r-1}e^{-{\frac {p}{1-p}}\lambda },円d\lambda \\&={\frac {p^{r}(1-p)^{-r}}{\Gamma (r)k!}}\int _{0}^{\infty }\lambda ^{k+r-1}e^{-\lambda {\frac {1}{1-p}}},円d\lambda \\&={\frac {p^{r}(1-p)^{-r}}{\Gamma (r)k!}}(1-p)^{k+r}\underbrace {\int _{0}^{\infty }\lambda ^{k+r-1}e^{-\lambda },円d\lambda } _{=\Gamma (r+k)}\\&={\frac {\Gamma (r+k)}{\Gamma (r)k!}}(1-p)^{k}p^{r}\end{aligned}}}

Therefore we get X NegB ( r , p ) . {\displaystyle X\sim \operatorname {NegB} (r,p).} {\displaystyle X\sim \operatorname {NegB} (r,p).}

TheoremCompounding a Poisson distribution with rate parameter distributed according to an exponential distribution yields a geometric distribution.

Proof

Let π ( λ ) = 1 β e λ β {\displaystyle \pi (\lambda )={\frac {1}{\beta }}e^{-{\frac {\lambda }{\beta }}}} {\displaystyle \pi (\lambda )={\frac {1}{\beta }}e^{-{\frac {\lambda }{\beta }}}} be a density of a Exp ( 1 β ) {\displaystyle \operatorname {Exp} \left({\frac {1}{\beta }}\right)} {\displaystyle \operatorname {Exp} \left({\frac {1}{\beta }}\right)} distributed random variable. Using integration by parts k times yields: P ( X = k ) = 1 k ! 0 λ k e λ 1 β e λ β d λ = 1 k ! β 0 λ k e λ ( 1 + β β ) d λ = 1 k ! β k ! ( β 1 + β ) k 0 e λ ( 1 + β β ) d λ = ( β 1 + β ) k ( 1 1 + β ) {\displaystyle {\begin{aligned}\operatorname {P} (X=k)&={\frac {1}{k!}}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda }{\frac {1}{\beta }}e^{-{\frac {\lambda }{\beta }}},円d\lambda \\&={\frac {1}{k!\beta }}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda \left({\frac {1+\beta }{\beta }}\right)},円d\lambda \\&={\frac {1}{k!\beta }}\cdot k!\left({\frac {\beta }{1+\beta }}\right)^{k}\int _{0}^{\infty }e^{-\lambda \left({\frac {1+\beta }{\beta }}\right)},円d\lambda \\&=\left({\frac {\beta }{1+\beta }}\right)^{k}\left({\frac {1}{1+\beta }}\right)\end{aligned}}} {\displaystyle {\begin{aligned}\operatorname {P} (X=k)&={\frac {1}{k!}}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda }{\frac {1}{\beta }}e^{-{\frac {\lambda }{\beta }}},円d\lambda \\&={\frac {1}{k!\beta }}\int _{0}^{\infty }\lambda ^{k}e^{-\lambda \left({\frac {1+\beta }{\beta }}\right)},円d\lambda \\&={\frac {1}{k!\beta }}\cdot k!\left({\frac {\beta }{1+\beta }}\right)^{k}\int _{0}^{\infty }e^{-\lambda \left({\frac {1+\beta }{\beta }}\right)},円d\lambda \\&=\left({\frac {\beta }{1+\beta }}\right)^{k}\left({\frac {1}{1+\beta }}\right)\end{aligned}}} Therefore we get X G e o ( 1 1 + β ) . {\displaystyle X\sim \operatorname {Geo\left({\frac {1}{1+\beta }}\right)} .} {\displaystyle X\sim \operatorname {Geo\left({\frac {1}{1+\beta }}\right)} .}

Table of mixed Poisson distributions

[edit ]
mixing distribution mixed Poisson distribution[4]
Dirac Poisson
gamma, Erlang negative binomial
exponential geometric
inverse Gaussian Sichel
Poisson Neyman
generalized inverse Gaussian Poisson-generalized inverse Gaussian
generalized gamma Poisson-generalized gamma
generalized Pareto Poisson-generalized Pareto
inverse-gamma Poisson-inverse gamma
log-normal Poisson-log-normal
Lomax Poisson–Lomax
Pareto Poisson–Pareto
Pearson’s family of distributions Poisson–Pearson family
truncated normal Poisson-truncated normal
uniform Poisson-uniform
shifted gamma Delaporte
beta with specific parameter values Yule

References

[edit ]
  1. ^ Willmot, Gordon E.; Lin, X. Sheldon (2001), "Mixed Poisson distributions" , Lundberg Approximations for Compound Distributions with Insurance Applications, Lecture Notes in Statistics, vol. 156, New York, NY: Springer New York, pp. 37–49, doi:10.1007/978-1-4613-0111-0_3, ISBN 978-0-387-95135-5 , retrieved 2022年07月08日
  2. ^ Willmot, Gord (1986). "Mixed Compound Poisson Distributions". ASTIN Bulletin. 16 (S1): S59 – S79. doi:10.1017/S051503610001165X . ISSN 0515-0361.
  3. ^ a b c d Willmot, Gord (2014年08月29日). "Mixed Compound Poisson Distributions". Astin Bulletin. 16: 5–7. doi:10.1017/S051503610001165X . S2CID 17737506.
  4. ^ Karlis, Dimitris; Xekalaki, Evdokia (2005). "Mixed Poisson Distributions" . International Statistical Review. 73 (1): 35–58. doi:10.1111/j.1751-5823.2005.tb00250.x. ISSN 0306-7734. JSTOR 25472639. S2CID 53637483.

Further reading

[edit ]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /