Inverse-chi-squared distribution
Probability density function | |||
Cumulative distribution function | |||
Parameters | {\displaystyle \nu >0\!} | ||
---|---|---|---|
Support | {\displaystyle x\in (0,\infty )\!} | ||
{\displaystyle {\frac {2^{-\nu /2}}{\Gamma (\nu /2)}},円x^{-\nu /2-1}e^{-1/(2x)}\!} | |||
CDF | {\displaystyle \Gamma \!\left({\frac {\nu }{2}},{\frac {1}{2x}}\right){\bigg /},円\Gamma \!\left({\frac {\nu }{2}}\right)\!} | ||
Mean | {\displaystyle {\frac {1}{\nu -2}}\!} for {\displaystyle \nu >2\!} | ||
Median | {\displaystyle \approx {\dfrac {1}{\nu {\bigg (}1-{\dfrac {2}{9\nu }}{\bigg )}^{3}}}} | ||
Mode | {\displaystyle {\frac {1}{\nu +2}}\!} | ||
Variance | {\displaystyle {\frac {2}{(\nu -2)^{2}(\nu -4)}}\!} for {\displaystyle \nu >4\!} | ||
Skewness | {\displaystyle {\frac {4}{\nu -6}}{\sqrt {2(\nu -4)}}\!} for {\displaystyle \nu >6\!} | ||
Excess kurtosis | {\displaystyle {\frac {12(5\nu -22)}{(\nu -6)(\nu -8)}}\!} for {\displaystyle \nu >8\!} | ||
Entropy |
{\displaystyle {\frac {\nu }{2}}\!+\!\ln \!\left({\frac {\nu }{2}}\Gamma \!\left({\frac {\nu }{2}}\right)\right)} {\displaystyle \!-\!\left(1\!+\!{\frac {\nu }{2}}\right)\psi \!\left({\frac {\nu }{2}}\right)} | ||
MGF | {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-t}{2i}}\right)^{\!\!{\frac {\nu }{4}}}K_{\frac {\nu }{2}}\!\left({\sqrt {-2t}}\right)}; does not exist as real valued function | ||
CF | {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-it}{2}}\right)^{\!\!{\frac {\nu }{4}}}K_{\frac {\nu }{2}}\!\left({\sqrt {-2it}}\right)} |
In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution[1] ) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution. It is used in Bayesian inference as conjugate prior for the variance of the normal distribution.[2]
Definition
[edit ]The inverse chi-squared distribution (or inverted-chi-square distribution[1] ) is the probability distribution of a random variable whose multiplicative inverse (reciprocal) has a chi-squared distribution.
If {\displaystyle X} follows a chi-squared distribution with {\displaystyle \nu } degrees of freedom then {\displaystyle 1/X} follows the inverse chi-squared distribution with {\displaystyle \nu } degrees of freedom.
The probability density function of the inverse chi-squared distribution is given by
- {\displaystyle f(x;\nu )={\frac {2^{-\nu /2}}{\Gamma (\nu /2)}},円x^{-\nu /2-1}e^{-1/(2x)}}
In the above {\displaystyle x>0} and {\displaystyle \nu } is the degrees of freedom parameter. Further, {\displaystyle \Gamma } is the gamma function.
The inverse chi-squared distribution is a special case of the inverse-gamma distribution. with shape parameter {\displaystyle \alpha ={\frac {\nu }{2}}} and scale parameter {\displaystyle \beta ={\frac {1}{2}}}.
Related distributions
[edit ]- chi-squared: If {\displaystyle X\thicksim \chi ^{2}(\nu )} and {\displaystyle Y={\frac {1}{X}}}, then {\displaystyle Y\thicksim {\text{Inv-}}\chi ^{2}(\nu )}
- scaled-inverse chi-squared: If {\displaystyle X\thicksim {\text{Scale-inv-}}\chi ^{2}(\nu ,1/\nu ),円}, then {\displaystyle X\thicksim {\text{inv-}}\chi ^{2}(\nu )}
- Inverse gamma with {\displaystyle \alpha ={\frac {\nu }{2}}} and {\displaystyle \beta ={\frac {1}{2}}}
- Inverse chi-squared distribution is a special case of type 5 Pearson distribution
See also
[edit ]References
[edit ]- ^ a b Bernardo, J.M.; Smith, A.F.M. (1993) Bayesian Theory, Wiley (pages 119, 431) ISBN 0-471-49464-X
- ^ Gelman, Andrew; et al. (2014). "Normal data with a conjugate prior distribution". Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. pp. 67–68. ISBN 978-1-4398-4095-5.
External links
[edit ]- InvChisquare in geoR package for the R Language.