Normal-inverse-Wishart distribution
Notation | {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\sim \mathrm {NIW} ({\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu )} | ||
---|---|---|---|
Parameters |
{\displaystyle {\boldsymbol {\mu }}_{0}\in \mathbb {R} ^{D},円} location (vector of real) {\displaystyle \lambda >0,円} (real) {\displaystyle {\boldsymbol {\Psi }}\in \mathbb {R} ^{D\times D}} inverse scale matrix (pos. def.) {\displaystyle \nu >D-1,円} (real) | ||
Support | {\displaystyle {\boldsymbol {\mu }}\in \mathbb {R} ^{D};{\boldsymbol {\Sigma }}\in \mathbb {R} ^{D\times D}} covariance matrix (pos. def.) | ||
{\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}|{\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu )={\mathcal {N}}({\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},{\tfrac {1}{\lambda }}{\boldsymbol {\Sigma }})\ {\mathcal {W}}^{-1}({\boldsymbol {\Sigma }}|{\boldsymbol {\Psi }},\nu )} |
In probability theory and statistics, the normal-inverse-Wishart distribution (or Gaussian-inverse-Wishart distribution) is a multivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a multivariate normal distribution with unknown mean and covariance matrix (the inverse of the precision matrix).[1]
Definition
[edit ]Suppose
- {\displaystyle {\boldsymbol {\mu }}|{\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Sigma }}\sim {\mathcal {N}}\left({\boldsymbol {\mu }}{\Big |}{\boldsymbol {\mu }}_{0},{\frac {1}{\lambda }}{\boldsymbol {\Sigma }}\right)}
has a multivariate normal distribution with mean {\displaystyle {\boldsymbol {\mu }}_{0}} and covariance matrix {\displaystyle {\tfrac {1}{\lambda }}{\boldsymbol {\Sigma }}}, where
- {\displaystyle {\boldsymbol {\Sigma }}|{\boldsymbol {\Psi }},\nu \sim {\mathcal {W}}^{-1}({\boldsymbol {\Sigma }}|{\boldsymbol {\Psi }},\nu )}
has an inverse Wishart distribution. Then {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} has a normal-inverse-Wishart distribution, denoted as
- {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\sim \mathrm {NIW} ({\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu ).}
Characterization
[edit ]Probability density function
[edit ]- {\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}|{\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu )={\mathcal {N}}\left({\boldsymbol {\mu }}{\Big |}{\boldsymbol {\mu }}_{0},{\frac {1}{\lambda }}{\boldsymbol {\Sigma }}\right){\mathcal {W}}^{-1}({\boldsymbol {\Sigma }}|{\boldsymbol {\Psi }},\nu )}
The full version of the PDF is as follows:[2]
{\displaystyle f({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}|{\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu )={\frac {\lambda ^{D/2}|{\boldsymbol {\Psi }}|^{\nu /2}|{\boldsymbol {\Sigma }}|^{-{\frac {\nu +D+2}{2}}}}{(2\pi )^{D/2}2^{\frac {\nu D}{2}}\Gamma _{D}({\frac {\nu }{2}})}}{\text{exp}}\left\{-{\frac {1}{2}}Tr({\boldsymbol {\Psi \Sigma }}^{-1})-{\frac {\lambda }{2}}({\boldsymbol {\mu }}-{\boldsymbol {\mu }}_{0})^{T}{\boldsymbol {\Sigma }}^{-1}({\boldsymbol {\mu }}-{\boldsymbol {\mu }}_{0})\right\}}
Here {\displaystyle \Gamma _{D}[\cdot ]} is the multivariate gamma function and {\displaystyle Tr({\boldsymbol {\Psi }})} is the Trace of the given matrix.
Properties
[edit ]Scaling
[edit ]Marginal distributions
[edit ]By construction, the marginal distribution over {\displaystyle {\boldsymbol {\Sigma }}} is an inverse Wishart distribution, and the conditional distribution over {\displaystyle {\boldsymbol {\mu }}} given {\displaystyle {\boldsymbol {\Sigma }}} is a multivariate normal distribution. The marginal distribution over {\displaystyle {\boldsymbol {\mu }}} is a multivariate t-distribution.
Posterior distribution of the parameters
[edit ]Suppose the sampling density is a multivariate normal distribution
- {\displaystyle {\boldsymbol {y_{i}}}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }}\sim {\mathcal {N}}_{p}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}
where {\displaystyle {\boldsymbol {y}}} is an {\displaystyle n\times p} matrix and {\displaystyle {\boldsymbol {y_{i}}}} (of length {\displaystyle p}) is row {\displaystyle i} of the matrix .
With the mean and covariance matrix of the sampling distribution is unknown, we can place a Normal-Inverse-Wishart prior on the mean and covariance parameters jointly
- {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\sim \mathrm {NIW} ({\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu ).}
The resulting posterior distribution for the mean and covariance matrix will also be a Normal-Inverse-Wishart
- {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}|y)\sim \mathrm {NIW} ({\boldsymbol {\mu }}_{n},\lambda _{n},{\boldsymbol {\Psi }}_{n},\nu _{n}),}
where
- {\displaystyle {\boldsymbol {\mu }}_{n}={\frac {\lambda {\boldsymbol {\mu }}_{0}+n{\bar {\boldsymbol {y}}}}{\lambda +n}}}
- {\displaystyle \lambda _{n}=\lambda +n}
- {\displaystyle \nu _{n}=\nu +n}
- {\displaystyle {\boldsymbol {\Psi }}_{n}={\boldsymbol {\Psi +S}}+{\frac {\lambda n}{\lambda +n}}({\boldsymbol {{\bar {y}}-\mu _{0}}})({\boldsymbol {{\bar {y}}-\mu _{0}}})^{T}~~~\mathrm {with} ~~{\boldsymbol {S}}=\sum _{i=1}^{n}({\boldsymbol {y_{i}-{\bar {y}}}})({\boldsymbol {y_{i}-{\bar {y}}}})^{T}}.
To sample from the joint posterior of {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}, one simply draws samples from {\displaystyle {\boldsymbol {\Sigma }}|{\boldsymbol {y}}\sim {\mathcal {W}}^{-1}({\boldsymbol {\Psi }}_{n},\nu _{n})}, then draw {\displaystyle {\boldsymbol {\mu }}|{\boldsymbol {\Sigma ,y}}\sim {\mathcal {N}}_{p}({\boldsymbol {\mu }}_{n},{\boldsymbol {\Sigma }}/\lambda _{n})}. To draw from the posterior predictive of a new observation, draw {\displaystyle {\boldsymbol {\tilde {y}}}|{\boldsymbol {\mu ,\Sigma ,y}}\sim {\mathcal {N}}_{p}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} , given the already drawn values of {\displaystyle {\boldsymbol {\mu }}} and {\displaystyle {\boldsymbol {\Sigma }}}.[3]
Generating normal-inverse-Wishart random variates
[edit ]Generation of random variates is straightforward:
- Sample {\displaystyle {\boldsymbol {\Sigma }}} from an inverse Wishart distribution with parameters {\displaystyle {\boldsymbol {\Psi }}} and {\displaystyle \nu }
- Sample {\displaystyle {\boldsymbol {\mu }}} from a multivariate normal distribution with mean {\displaystyle {\boldsymbol {\mu }}_{0}} and variance {\displaystyle {\boldsymbol {\tfrac {1}{\lambda }}}{\boldsymbol {\Sigma }}}
Related distributions
[edit ]- The normal-Wishart distribution is essentially the same distribution parameterized by precision rather than variance. If {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\sim \mathrm {NIW} ({\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }},\nu )} then {\displaystyle ({\boldsymbol {\mu }},{\boldsymbol {\Sigma }}^{-1})\sim \mathrm {NW} ({\boldsymbol {\mu }}_{0},\lambda ,{\boldsymbol {\Psi }}^{-1},\nu )} .
- The normal-inverse-gamma distribution is the one-dimensional equivalent.
- The multivariate normal distribution and inverse Wishart distribution are the component distributions out of which this distribution is made.
Notes
[edit ]- ^ Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution." [1]
- ^ Simon J.D. Prince(June 2012). Computer Vision: Models, Learning, and Inference. Cambridge University Press. 3.8: "Normal inverse Wishart distribution".
- ^ Gelman, Andrew, et al. Bayesian data analysis. Vol. 2, p.73. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.
References
[edit ]- Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media.
- Murphy, Kevin P. (2007). "Conjugate Bayesian analysis of the Gaussian distribution." [2]