Jump to content
Wikipedia The Free Encyclopedia

Wrapped asymmetric Laplace distribution

From Wikipedia, the free encyclopedia
Wrapped asymmetric Laplace distribution
Probability density function

Wrapped asymmetric Laplace PDF with m = 0.Note that the κ =  2 and 1/2 curves are mirror images about θ=π
Parameters

m {\displaystyle m} {\displaystyle m} location ( 0 m < 2 π ) {\displaystyle (0\leq m<2\pi )} {\displaystyle (0\leq m<2\pi )}
λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0} scale (real)

κ > 0 {\displaystyle \kappa >0} {\displaystyle \kappa >0} asymmetry (real)
Support 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi } {\displaystyle 0\leq \theta <2\pi }
PDF (see article)
Mean m {\displaystyle m} {\displaystyle m} (circular)
Variance 1 λ 2 ( 1 κ 2 + λ 2 ) ( κ 2 + λ 2 ) {\displaystyle 1-{\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}} {\displaystyle 1-{\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}} (circular)
CF λ 2 e i m n ( n i λ / κ ) ( n + i λ κ ) {\displaystyle {\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}} {\displaystyle {\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}}

In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.

Definition

[edit ]

The probability density function of the wrapped asymmetric Laplace distribution is:[1]

f W A L ( θ ; m , λ , κ ) = k = f A L ( θ + 2 π k , m , λ , κ ) = κ λ κ 2 + 1 { e ( θ m ) λ κ 1 e 2 π λ κ e ( θ m ) λ / κ 1 e 2 π λ / κ if  θ m e ( θ m ) λ κ e 2 π λ κ 1 e ( θ m ) λ / κ e 2 π λ / κ 1 if  θ < m {\displaystyle {\begin{aligned}f_{WAL}(\theta ;m,\lambda ,\kappa )&=\sum _{k=-\infty }^{\infty }f_{AL}(\theta +2\pi k,m,\lambda ,\kappa )\\[10pt]&={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{-(\theta -m)\lambda \kappa }}{1-e^{-2\pi \lambda \kappa }}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{1-e^{2\pi \lambda /\kappa }}}&{\text{if }}\theta \geq m\\[12pt]{\dfrac {e^{-(\theta -m)\lambda \kappa }}{e^{2\pi \lambda \kappa }-1}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{e^{-2\pi \lambda /\kappa }-1}}&{\text{if }}\theta <m\end{cases}}\end{aligned}}} {\displaystyle {\begin{aligned}f_{WAL}(\theta ;m,\lambda ,\kappa )&=\sum _{k=-\infty }^{\infty }f_{AL}(\theta +2\pi k,m,\lambda ,\kappa )\\[10pt]&={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{-(\theta -m)\lambda \kappa }}{1-e^{-2\pi \lambda \kappa }}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{1-e^{2\pi \lambda /\kappa }}}&{\text{if }}\theta \geq m\\[12pt]{\dfrac {e^{-(\theta -m)\lambda \kappa }}{e^{2\pi \lambda \kappa }-1}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{e^{-2\pi \lambda /\kappa }-1}}&{\text{if }}\theta <m\end{cases}}\end{aligned}}}

where f A L {\displaystyle f_{AL}} {\displaystyle f_{AL}} is the asymmetric Laplace distribution. The angular parameter is restricted to 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi } {\displaystyle 0\leq \theta <2\pi }. The scale parameter is λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0} which is the scale parameter of the unwrapped distribution and κ > 0 {\displaystyle \kappa >0} {\displaystyle \kappa >0} is the asymmetry parameter of the unwrapped distribution.

The cumulative distribution function F W A L {\displaystyle F_{WAL}} {\displaystyle F_{WAL}} is therefore:

F W A L ( θ ; m , λ , κ ) = κ λ κ 2 + 1 { e m λ κ ( 1 e θ λ κ ) λ κ ( e 2 π λ κ 1 ) + κ e m λ / κ ( 1 e θ λ / κ ) λ ( e 2 π λ / κ 1 ) if  θ m 1 e ( θ m ) λ κ λ κ ( 1 e 2 π λ κ ) + κ ( 1 e ( θ m ) λ / κ ) λ ( 1 e 2 π λ / κ ) + e m λ κ 1 λ κ ( e 2 π λ κ 1 ) + κ ( e m λ / κ 1 ) λ ( e 2 π λ / κ 1 ) if  θ > m {\displaystyle F_{WAL}(\theta ;m,\lambda ,\kappa )={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{m\lambda \kappa }(1-e^{-\theta \lambda \kappa })}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa e^{-m\lambda /\kappa }(1-e^{\theta \lambda /\kappa })}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta \leq m\\{\dfrac {1-e^{-(\theta -m)\lambda \kappa }}{\lambda \kappa (1-e^{-2\pi \lambda \kappa })}}+{\dfrac {\kappa (1-e^{(\theta -m)\lambda /\kappa })}{\lambda (1-e^{2\pi \lambda /\kappa })}}+{\dfrac {e^{m\lambda \kappa }-1}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa (e^{-m\lambda /\kappa }-1)}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta >m\end{cases}}} {\displaystyle F_{WAL}(\theta ;m,\lambda ,\kappa )={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{m\lambda \kappa }(1-e^{-\theta \lambda \kappa })}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa e^{-m\lambda /\kappa }(1-e^{\theta \lambda /\kappa })}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta \leq m\\{\dfrac {1-e^{-(\theta -m)\lambda \kappa }}{\lambda \kappa (1-e^{-2\pi \lambda \kappa })}}+{\dfrac {\kappa (1-e^{(\theta -m)\lambda /\kappa })}{\lambda (1-e^{2\pi \lambda /\kappa })}}+{\dfrac {e^{m\lambda \kappa }-1}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa (e^{-m\lambda /\kappa }-1)}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta >m\end{cases}}}

Characteristic function

[edit ]

The characteristic function of the wrapped asymmetric Laplace is just the characteristic function of the asymmetric Laplace function evaluated at integer arguments:

φ n ( m , λ , κ ) = λ 2 e i m n ( n i λ / κ ) ( n + i λ κ ) {\displaystyle \varphi _{n}(m,\lambda ,\kappa )={\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}} {\displaystyle \varphi _{n}(m,\lambda ,\kappa )={\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}}

which yields an alternate expression for the wrapped asymmetric Laplace PDF in terms of the circular variable z=ei(θ-m) valid for all real θ and m:

f W A L ( z ; m , λ , κ ) = 1 2 π n = φ n ( 0 , λ , κ ) z n = λ π ( κ + 1 / κ ) { Im ( Φ ( z , 1 , i λ κ ) Φ ( z , 1 , i λ / κ ) ) 1 2 π if  z 1 coth ( π λ κ ) + coth ( π λ / κ ) if  z = 1 {\displaystyle {\begin{aligned}f_{WAL}(z;m,\lambda ,\kappa )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }\varphi _{n}(0,\lambda ,\kappa )z^{-n}\\[10pt]&={\frac {\lambda }{\pi (\kappa +1/\kappa )}}{\begin{cases}{\textrm {Im}}\left(\Phi (z,1,-i\lambda \kappa )-\Phi \left(z,1,i\lambda /\kappa \right)\right)-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]\coth(\pi \lambda \kappa )+\coth(\pi \lambda /\kappa )&{\text{if }}z=1\end{cases}}\end{aligned}}} {\displaystyle {\begin{aligned}f_{WAL}(z;m,\lambda ,\kappa )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }\varphi _{n}(0,\lambda ,\kappa )z^{-n}\\[10pt]&={\frac {\lambda }{\pi (\kappa +1/\kappa )}}{\begin{cases}{\textrm {Im}}\left(\Phi (z,1,-i\lambda \kappa )-\Phi \left(z,1,i\lambda /\kappa \right)\right)-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]\coth(\pi \lambda \kappa )+\coth(\pi \lambda /\kappa )&{\text{if }}z=1\end{cases}}\end{aligned}}}

where Φ ( ) {\displaystyle \Phi ()} {\displaystyle \Phi ()} is the Lerch transcendent function and coth() is the hyperbolic cotangent function.

Circular moments

[edit ]

In terms of the circular variable z = e i θ {\displaystyle z=e^{i\theta }} {\displaystyle z=e^{i\theta }} the circular moments of the wrapped asymmetric Laplace distribution are the characteristic function of the asymmetric Laplace distribution evaluated at integer arguments:

z n = φ n ( m , λ , κ ) {\displaystyle \langle z^{n}\rangle =\varphi _{n}(m,\lambda ,\kappa )} {\displaystyle \langle z^{n}\rangle =\varphi _{n}(m,\lambda ,\kappa )}

The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

z = λ 2 e i m ( 1 i λ / κ ) ( 1 + i λ κ ) {\displaystyle \langle z\rangle ={\frac {\lambda ^{2}e^{im}}{\left(1-i\lambda /\kappa \right)\left(1+i\lambda \kappa \right)}}} {\displaystyle \langle z\rangle ={\frac {\lambda ^{2}e^{im}}{\left(1-i\lambda /\kappa \right)\left(1+i\lambda \kappa \right)}}}

The mean angle is ( π θ π ) {\displaystyle (-\pi \leq \langle \theta \rangle \leq \pi )} {\displaystyle (-\pi \leq \langle \theta \rangle \leq \pi )}

θ = arg ( z ) = arg ( e i m ) {\displaystyle \langle \theta \rangle =\arg(,円\langle z\rangle ,円)=\arg(e^{im})} {\displaystyle \langle \theta \rangle =\arg(,円\langle z\rangle ,円)=\arg(e^{im})}

and the length of the mean resultant is

R = | z | = λ 2 ( 1 κ 2 + λ 2 ) ( κ 2 + λ 2 ) . {\displaystyle R=|\langle z\rangle |={\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}.} {\displaystyle R=|\langle z\rangle |={\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}.}

The circular variance is then 1 − R

Generation of random variates

[edit ]

If X is a random variate drawn from an asymmetric Laplace distribution (ALD), then Z = e i X {\displaystyle Z=e^{iX}} {\displaystyle Z=e^{iX}} will be a circular variate drawn from the wrapped ALD, and, θ = arg ( Z ) + π {\displaystyle \theta =\arg(Z)+\pi } {\displaystyle \theta =\arg(Z)+\pi } will be an angular variate drawn from the wrapped ALD with 0 < θ 2 π {\displaystyle 0<\theta \leq 2\pi } {\displaystyle 0<\theta \leq 2\pi }.

Since the ALD is the distribution of the difference of two variates drawn from the exponential distribution, it follows that if Z1 is drawn from a wrapped exponential distribution with mean m1 and rate λ/κ and Z2 is drawn from a wrapped exponential distribution with mean m2 and rate λκ, then Z1/Z2 will be a circular variate drawn from the wrapped ALD with parameters ( m1 - m2 , λ, κ) and θ = arg ( Z 1 / Z 2 ) + π {\displaystyle \theta =\arg(Z_{1}/Z_{2})+\pi } {\displaystyle \theta =\arg(Z_{1}/Z_{2})+\pi } will be an angular variate drawn from that wrapped ALD with π < θ π {\displaystyle -\pi <\theta \leq \pi } {\displaystyle -\pi <\theta \leq \pi }.

See also

[edit ]

References

[edit ]
  1. ^ Jammalamadaka, S. Rao; Kozubowski, Tomasz J. (2004). "New Families of Wrapped Distributions for Modeling Skew Circular Data" (PDF). Communications in Statistics – Theory and Methods. 33 (9): 2059–2074. doi:10.1081/STA-200026570 . Retrieved 2011年06月13日.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /