Wrapped asymmetric Laplace distribution
Probability density function Wrapped asymmetric Laplace PDF with m = 0.Note that the κ = 2 and 1/2 curves are mirror images about θ=π | |||
Parameters |
{\displaystyle m} location {\displaystyle (0\leq m<2\pi )} | ||
---|---|---|---|
Support | {\displaystyle 0\leq \theta <2\pi } | ||
(see article) | |||
Mean | {\displaystyle m} (circular) | ||
Variance | {\displaystyle 1-{\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}} (circular) | ||
CF | {\displaystyle {\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}} |
In probability theory and directional statistics, a wrapped asymmetric Laplace distribution is a wrapped probability distribution that results from the "wrapping" of the asymmetric Laplace distribution around the unit circle. For the symmetric case (asymmetry parameter κ = 1), the distribution becomes a wrapped Laplace distribution. The distribution of the ratio of two circular variates (Z) from two different wrapped exponential distributions will have a wrapped asymmetric Laplace distribution. These distributions find application in stochastic modelling of financial data.
Definition
[edit ]The probability density function of the wrapped asymmetric Laplace distribution is:[1]
- {\displaystyle {\begin{aligned}f_{WAL}(\theta ;m,\lambda ,\kappa )&=\sum _{k=-\infty }^{\infty }f_{AL}(\theta +2\pi k,m,\lambda ,\kappa )\\[10pt]&={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{-(\theta -m)\lambda \kappa }}{1-e^{-2\pi \lambda \kappa }}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{1-e^{2\pi \lambda /\kappa }}}&{\text{if }}\theta \geq m\\[12pt]{\dfrac {e^{-(\theta -m)\lambda \kappa }}{e^{2\pi \lambda \kappa }-1}}-{\dfrac {e^{(\theta -m)\lambda /\kappa }}{e^{-2\pi \lambda /\kappa }-1}}&{\text{if }}\theta <m\end{cases}}\end{aligned}}}
where {\displaystyle f_{AL}} is the asymmetric Laplace distribution. The angular parameter is restricted to {\displaystyle 0\leq \theta <2\pi }. The scale parameter is {\displaystyle \lambda >0} which is the scale parameter of the unwrapped distribution and {\displaystyle \kappa >0} is the asymmetry parameter of the unwrapped distribution.
The cumulative distribution function {\displaystyle F_{WAL}} is therefore:
- {\displaystyle F_{WAL}(\theta ;m,\lambda ,\kappa )={\dfrac {\kappa \lambda }{\kappa ^{2}+1}}{\begin{cases}{\dfrac {e^{m\lambda \kappa }(1-e^{-\theta \lambda \kappa })}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa e^{-m\lambda /\kappa }(1-e^{\theta \lambda /\kappa })}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta \leq m\\{\dfrac {1-e^{-(\theta -m)\lambda \kappa }}{\lambda \kappa (1-e^{-2\pi \lambda \kappa })}}+{\dfrac {\kappa (1-e^{(\theta -m)\lambda /\kappa })}{\lambda (1-e^{2\pi \lambda /\kappa })}}+{\dfrac {e^{m\lambda \kappa }-1}{\lambda \kappa (e^{2\pi \lambda \kappa }-1)}}+{\dfrac {\kappa (e^{-m\lambda /\kappa }-1)}{\lambda (e^{-2\pi \lambda /\kappa }-1)}}&{\text{if }}\theta >m\end{cases}}}
Characteristic function
[edit ]The characteristic function of the wrapped asymmetric Laplace is just the characteristic function of the asymmetric Laplace function evaluated at integer arguments:
- {\displaystyle \varphi _{n}(m,\lambda ,\kappa )={\frac {\lambda ^{2}e^{imn}}{\left(n-i\lambda /\kappa \right)\left(n+i\lambda \kappa \right)}}}
which yields an alternate expression for the wrapped asymmetric Laplace PDF in terms of the circular variable z=ei(θ-m) valid for all real θ and m:
- {\displaystyle {\begin{aligned}f_{WAL}(z;m,\lambda ,\kappa )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }\varphi _{n}(0,\lambda ,\kappa )z^{-n}\\[10pt]&={\frac {\lambda }{\pi (\kappa +1/\kappa )}}{\begin{cases}{\textrm {Im}}\left(\Phi (z,1,-i\lambda \kappa )-\Phi \left(z,1,i\lambda /\kappa \right)\right)-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]\coth(\pi \lambda \kappa )+\coth(\pi \lambda /\kappa )&{\text{if }}z=1\end{cases}}\end{aligned}}}
where {\displaystyle \Phi ()} is the Lerch transcendent function and coth() is the hyperbolic cotangent function.
Circular moments
[edit ]In terms of the circular variable {\displaystyle z=e^{i\theta }} the circular moments of the wrapped asymmetric Laplace distribution are the characteristic function of the asymmetric Laplace distribution evaluated at integer arguments:
- {\displaystyle \langle z^{n}\rangle =\varphi _{n}(m,\lambda ,\kappa )}
The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:
- {\displaystyle \langle z\rangle ={\frac {\lambda ^{2}e^{im}}{\left(1-i\lambda /\kappa \right)\left(1+i\lambda \kappa \right)}}}
The mean angle is {\displaystyle (-\pi \leq \langle \theta \rangle \leq \pi )}
- {\displaystyle \langle \theta \rangle =\arg(,円\langle z\rangle ,円)=\arg(e^{im})}
and the length of the mean resultant is
- {\displaystyle R=|\langle z\rangle |={\frac {\lambda ^{2}}{\sqrt {\left({\frac {1}{\kappa ^{2}}}+\lambda ^{2}\right)\left(\kappa ^{2}+\lambda ^{2}\right)}}}.}
The circular variance is then 1 − R
Generation of random variates
[edit ]If X is a random variate drawn from an asymmetric Laplace distribution (ALD), then {\displaystyle Z=e^{iX}} will be a circular variate drawn from the wrapped ALD, and, {\displaystyle \theta =\arg(Z)+\pi } will be an angular variate drawn from the wrapped ALD with {\displaystyle 0<\theta \leq 2\pi }.
Since the ALD is the distribution of the difference of two variates drawn from the exponential distribution, it follows that if Z1 is drawn from a wrapped exponential distribution with mean m1 and rate λ/κ and Z2 is drawn from a wrapped exponential distribution with mean m2 and rate λκ, then Z1/Z2 will be a circular variate drawn from the wrapped ALD with parameters ( m1 - m2 , λ, κ) and {\displaystyle \theta =\arg(Z_{1}/Z_{2})+\pi } will be an angular variate drawn from that wrapped ALD with {\displaystyle -\pi <\theta \leq \pi }.
See also
[edit ]References
[edit ]- ^ Jammalamadaka, S. Rao; Kozubowski, Tomasz J. (2004). "New Families of Wrapped Distributions for Modeling Skew Circular Data" (PDF). Communications in Statistics – Theory and Methods. 33 (9): 2059–2074. doi:10.1081/STA-200026570 . Retrieved 2011年06月13日.