Jump to content
Wikipedia The Free Encyclopedia

Kaniadakis logistic distribution

From Wikipedia, the free encyclopedia
Probability distribution
The topic of this article may not meet Wikipedia's general notability guideline . Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Kaniadakis logistic distribution" – news · newspapers · books · scholar · JSTOR
(February 2023) (Learn how and when to remove this message)
This article relies largely or entirely on a single source . Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Kaniadakis logistic distribution" – news · newspapers · books · scholar · JSTOR
(July 2022)
κ-Logistic distribution
Probability density function
Plot of the κ-Logistic distribution for typical κ-values and β = 1 {\displaystyle \beta =1} {\displaystyle \beta =1}. The case κ = 0 {\displaystyle \kappa =0} {\displaystyle \kappa =0} corresponds to the ordinary Logistic distribution.
Cumulative distribution function
Plots of the cumulative κ-Logistic distribution for typical κ-values and β = 1 {\displaystyle \beta =1} {\displaystyle \beta =1}. The case κ = 0 {\displaystyle \kappa =0} {\displaystyle \kappa =0} corresponds to the ordinary Logistic case.
Parameters 0 κ < 1 {\displaystyle 0\leq \kappa <1} {\displaystyle 0\leq \kappa <1}
α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} shape (real)
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} rate (real)
λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0}
Support x [ 0 , ) {\displaystyle x\in [0,\infty )} {\displaystyle x\in [0,\infty )}
PDF λ α β x α 1 1 + κ 2 β 2 x 2 α exp κ ( β x α ) [ 1 + ( λ 1 ) exp κ ( β x α ) ] 2 {\displaystyle {\frac {\lambda \alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}{\frac {\exp _{\kappa }(-\beta x^{\alpha })}{[1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })]^{2}}}} {\displaystyle {\frac {\lambda \alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}{\frac {\exp _{\kappa }(-\beta x^{\alpha })}{[1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })]^{2}}}}
CDF 1 exp κ ( β x α ) 1 + ( λ 1 ) exp κ ( β x α ) {\displaystyle {\frac {1-\exp _{\kappa }(-\beta x^{\alpha })}{1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })}}} {\displaystyle {\frac {1-\exp _{\kappa }(-\beta x^{\alpha })}{1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })}}}

The Kaniadakis Logistic distribution (also known as κ-Logisticdistribution) is a generalized version of the Logistic distribution associated with the Kaniadakis statistics. It is one example of a Kaniadakis distribution. The κ-Logistic probability distribution describes the population kinetics behavior of bosonic ( 0 < λ < 1 {\displaystyle 0<\lambda <1} {\displaystyle 0<\lambda <1}) or fermionic ( λ > 1 {\displaystyle \lambda >1} {\displaystyle \lambda >1}) character.[1]

Definitions

[edit ]

Probability density function

[edit ]

The Kaniadakis κ-Logistic distribution is a four-parameter family of continuous statistical distributions, which is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics. This distribution has the following probability density function:[1]

f κ ( x ) = λ α β x α 1 1 + κ 2 β 2 x 2 α exp κ ( β x α ) [ 1 + ( λ 1 ) exp κ ( β x α ) ] 2 {\displaystyle f_{_{\kappa }}(x)={\frac {\lambda \alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}{\frac {\exp _{\kappa }(-\beta x^{\alpha })}{[1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })]^{2}}}} {\displaystyle f_{_{\kappa }}(x)={\frac {\lambda \alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}{\frac {\exp _{\kappa }(-\beta x^{\alpha })}{[1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })]^{2}}}}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}, where 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} {\displaystyle 0\leq |\kappa |<1} is the entropic index associated with the Kaniadakis entropy, β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} is the rate parameter, λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0}, and α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} is the shape parameter.

The Logistic distribution is recovered as κ 0. {\displaystyle \kappa \rightarrow 0.} {\displaystyle \kappa \rightarrow 0.}

Cumulative distribution function

[edit ]

The cumulative distribution function of κ-Logistic is given by

F κ ( x ) = 1 exp κ ( β x α ) 1 + ( λ 1 ) exp κ ( β x α ) {\displaystyle F_{\kappa }(x)={\frac {1-\exp _{\kappa }(-\beta x^{\alpha })}{1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })}}} {\displaystyle F_{\kappa }(x)={\frac {1-\exp _{\kappa }(-\beta x^{\alpha })}{1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })}}}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}. The cumulative Logistic distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

Survival and hazard functions

[edit ]

The survival distribution function of κ-Logistic distribution is given by

S κ ( x ) = λ exp κ ( β x α ) + λ 1 {\displaystyle S_{\kappa }(x)={\frac {\lambda }{\exp _{\kappa }(\beta x^{\alpha })+\lambda -1}}} {\displaystyle S_{\kappa }(x)={\frac {\lambda }{\exp _{\kappa }(\beta x^{\alpha })+\lambda -1}}}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}. The survival Logistic distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

The hazard function associated with the κ-Logistic distribution is obtained by the solution of the following evolution equation:

S κ ( x ) d x = h κ S κ ( x ) ( 1 λ 1 λ S κ ( x ) ) {\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)\left(1-{\frac {\lambda -1}{\lambda }}S_{\kappa }(x)\right)} {\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)\left(1-{\frac {\lambda -1}{\lambda }}S_{\kappa }(x)\right)}

with S κ ( 0 ) = 1 {\displaystyle S_{\kappa }(0)=1} {\displaystyle S_{\kappa }(0)=1}, where h κ {\displaystyle h_{\kappa }} {\displaystyle h_{\kappa }} is the hazard function:

h κ = α β x α 1 1 + κ 2 β 2 x 2 α {\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}} {\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}}

The cumulative Kaniadakis κ-Logistic distribution is related to the hazard function by the following expression:

S κ = e H κ ( x ) {\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}} {\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}}

where H κ ( x ) = 0 x h κ ( z ) d z {\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz} {\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz} is the cumulative hazard function. The cumulative hazard function of the Logistic distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

[edit ]
  • The survival function of the κ-Logistic distribution represents the κ-deformation of the Fermi-Dirac function, and becomes a Fermi-Dirac distribution in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.[1]
  • The κ-Logistic distribution is a generalization of the κ-Weibull distribution when λ = 1 {\displaystyle \lambda =1} {\displaystyle \lambda =1}.
  • A κ-Logistic distribution corresponds to a Half-Logistic distribution when λ = 2 {\displaystyle \lambda =2} {\displaystyle \lambda =2}, α = 1 {\displaystyle \alpha =1} {\displaystyle \alpha =1} and κ = 0 {\displaystyle \kappa =0} {\displaystyle \kappa =0}.
  • The ordinary Logistic distribution is a particular case of a κ-Logistic distribution, when κ = 0 {\displaystyle \kappa =0} {\displaystyle \kappa =0}.

Applications

[edit ]

The κ-Logistic distribution has been applied in several areas, such as:

  • In quantum statistics, the survival function of the κ-Logistic distribution represents the most general expression of the Fermi-Dirac function, reducing to the Fermi-Dirac distribution in the limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.[2] [3] [4]

See also

[edit ]

References

[edit ]
  1. ^ a b c Kaniadakis, G. (2021年01月01日). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743 . Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
  2. ^ Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. (2011). "Kaniadakis statistics and the quantum H-theorem". Physics Letters A. 375 (3): 352–355. Bibcode:2011PhLA..375..352S. doi:10.1016/j.physleta.2010年11月04日5 .
  3. ^ Kaniadakis, G. (2001). "H-theorem and generalized entropies within the framework of nonlinear kinetics". Physics Letters A. 288 (5–6): 283–291. arXiv:cond-mat/0109192 . Bibcode:2001PhLA..288..283K. doi:10.1016/S0375-9601(01)00543-6. S2CID 119445915.
  4. ^ Lourek, Imene; Tribeche, Mouloud (2017). "Thermodynamic properties of the blackbody radiation: A Kaniadakis approach". Physics Letters A. 381 (5): 452–456. Bibcode:2017PhLA..381..452L. doi:10.1016/j.physleta.2016年12月01日9.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /