Kaniadakis logistic distribution
Find sources: "Kaniadakis logistic distribution" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)
Find sources: "Kaniadakis logistic distribution" – news · newspapers · books · scholar · JSTOR (July 2022)
Probability density function Plot of the κ-Logistic distribution for typical κ-values and {\displaystyle \beta =1}. The case {\displaystyle \kappa =0} corresponds to the ordinary Logistic distribution. | |||
Cumulative distribution function Plots of the cumulative κ-Logistic distribution for typical κ-values and {\displaystyle \beta =1}. The case {\displaystyle \kappa =0} corresponds to the ordinary Logistic case. | |||
Parameters |
{\displaystyle 0\leq \kappa <1} {\displaystyle \alpha >0} shape (real) {\displaystyle \beta >0} rate (real) {\displaystyle \lambda >0} | ||
---|---|---|---|
Support | {\displaystyle x\in [0,\infty )} | ||
{\displaystyle {\frac {\lambda \alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}{\frac {\exp _{\kappa }(-\beta x^{\alpha })}{[1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })]^{2}}}} | |||
CDF | {\displaystyle {\frac {1-\exp _{\kappa }(-\beta x^{\alpha })}{1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })}}} |
The Kaniadakis Logistic distribution (also known as κ-Logisticdistribution) is a generalized version of the Logistic distribution associated with the Kaniadakis statistics. It is one example of a Kaniadakis distribution. The κ-Logistic probability distribution describes the population kinetics behavior of bosonic ({\displaystyle 0<\lambda <1}) or fermionic ({\displaystyle \lambda >1}) character.[1]
Definitions
[edit ]Probability density function
[edit ]The Kaniadakis κ-Logistic distribution is a four-parameter family of continuous statistical distributions, which is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics. This distribution has the following probability density function:[1]
- {\displaystyle f_{_{\kappa }}(x)={\frac {\lambda \alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}{\frac {\exp _{\kappa }(-\beta x^{\alpha })}{[1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })]^{2}}}}
valid for {\displaystyle x\geq 0}, where {\displaystyle 0\leq |\kappa |<1} is the entropic index associated with the Kaniadakis entropy, {\displaystyle \beta >0} is the rate parameter, {\displaystyle \lambda >0}, and {\displaystyle \alpha >0} is the shape parameter.
The Logistic distribution is recovered as {\displaystyle \kappa \rightarrow 0.}
Cumulative distribution function
[edit ]The cumulative distribution function of κ-Logistic is given by
- {\displaystyle F_{\kappa }(x)={\frac {1-\exp _{\kappa }(-\beta x^{\alpha })}{1+(\lambda -1)\exp _{\kappa }(-\beta x^{\alpha })}}}
valid for {\displaystyle x\geq 0}. The cumulative Logistic distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}.
Survival and hazard functions
[edit ]The survival distribution function of κ-Logistic distribution is given by
- {\displaystyle S_{\kappa }(x)={\frac {\lambda }{\exp _{\kappa }(\beta x^{\alpha })+\lambda -1}}}
valid for {\displaystyle x\geq 0}. The survival Logistic distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}.
The hazard function associated with the κ-Logistic distribution is obtained by the solution of the following evolution equation:
{\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)\left(1-{\frac {\lambda -1}{\lambda }}S_{\kappa }(x)\right)}
with {\displaystyle S_{\kappa }(0)=1}, where {\displaystyle h_{\kappa }} is the hazard function:
- {\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}}
The cumulative Kaniadakis κ-Logistic distribution is related to the hazard function by the following expression:
- {\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}}
where {\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz} is the cumulative hazard function. The cumulative hazard function of the Logistic distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}.
Related distributions
[edit ]- The survival function of the κ-Logistic distribution represents the κ-deformation of the Fermi-Dirac function, and becomes a Fermi-Dirac distribution in the classical limit {\displaystyle \kappa \rightarrow 0}.[1]
- The κ-Logistic distribution is a generalization of the κ-Weibull distribution when {\displaystyle \lambda =1}.
- A κ-Logistic distribution corresponds to a Half-Logistic distribution when {\displaystyle \lambda =2}, {\displaystyle \alpha =1} and {\displaystyle \kappa =0}.
- The ordinary Logistic distribution is a particular case of a κ-Logistic distribution, when {\displaystyle \kappa =0}.
Applications
[edit ]The κ-Logistic distribution has been applied in several areas, such as:
- In quantum statistics, the survival function of the κ-Logistic distribution represents the most general expression of the Fermi-Dirac function, reducing to the Fermi-Dirac distribution in the limit {\displaystyle \kappa \rightarrow 0}.[2] [3] [4]
See also
[edit ]- Giorgio Kaniadakis
- Kaniadakis statistics
- Kaniadakis distribution
- Kaniadakis κ-Exponential distribution
- Kaniadakis κ-Gaussian distribution
- Kaniadakis κ-Gamma distribution
- Kaniadakis κ-Weibull distribution
- Kaniadakis κ-Erlang distribution
References
[edit ]- ^ a b c Kaniadakis, G. (2021年01月01日). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743 . Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
- ^ Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. (2011). "Kaniadakis statistics and the quantum H-theorem". Physics Letters A. 375 (3): 352–355. Bibcode:2011PhLA..375..352S. doi:10.1016/j.physleta.2010年11月04日5 .
- ^ Kaniadakis, G. (2001). "H-theorem and generalized entropies within the framework of nonlinear kinetics". Physics Letters A. 288 (5–6): 283–291. arXiv:cond-mat/0109192 . Bibcode:2001PhLA..288..283K. doi:10.1016/S0375-9601(01)00543-6. S2CID 119445915.
- ^ Lourek, Imene; Tribeche, Mouloud (2017). "Thermodynamic properties of the blackbody radiation: A Kaniadakis approach". Physics Letters A. 381 (5): 452–456. Bibcode:2017PhLA..381..452L. doi:10.1016/j.physleta.2016年12月01日9.