Jump to content
Wikipedia The Free Encyclopedia

Kaniadakis Weibull distribution

From Wikipedia, the free encyclopedia
Continuous probability distribution
The topic of this article may not meet Wikipedia's general notability guideline . Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Kaniadakis Weibull distribution" – news · newspapers · books · scholar · JSTOR
(February 2023) (Learn how and when to remove this message)
κ-Weibull distribution
Probability density function
Cumulative distribution function
Parameters 0 < κ < 1 {\displaystyle 0<\kappa <1} {\displaystyle 0<\kappa <1}
α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} rate shape (real)
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} rate (real)
Support x [ 0 , + ) {\displaystyle x\in [0,+\infty )} {\displaystyle x\in [0,+\infty )}
PDF α β x α 1 1 + κ 2 β 2 x 2 α exp κ ( β x α ) {\displaystyle {\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })} {\displaystyle {\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })}
CDF 1 exp κ ( β x α ) {\displaystyle 1-\exp _{\kappa }(-\beta x^{\alpha })} {\displaystyle 1-\exp _{\kappa }(-\beta x^{\alpha })}
Quantile β 1 / α [ ln κ ( 1 1 F κ ) ] 1 / α {\displaystyle \beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }} {\displaystyle \beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }}
Median β 1 / α ( ln κ ( 2 ) ) 1 / α {\displaystyle \beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }} {\displaystyle \beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }}
Mode β 1 / α ( α 2 + 2 κ 2 ( α 1 ) 2 κ 2 ( α 2 κ 2 ) 1 + 4 κ 2 ( α 2 κ 2 ) ( α 1 ) 2 [ α 2 + 2 κ 2 ( α 1 ) ] 2 1 ) 1 / 2 α {\displaystyle \beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }} {\displaystyle \beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }}
Method of moments ( 2 κ β ) m / α 1 + κ m α Γ ( 1 2 κ m 2 α ) Γ ( 1 2 κ + m 2 α ) Γ ( 1 + m α ) {\displaystyle {\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}} {\displaystyle {\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}}

The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution.[1] [2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

Definitions

[edit ]

Probability density function

[edit ]

The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function:[3]

f κ ( x ) = α β x α 1 1 + κ 2 β 2 x 2 α exp κ ( β x α ) {\displaystyle f_{_{\kappa }}(x)={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })} {\displaystyle f_{_{\kappa }}(x)={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}, where | κ | < 1 {\displaystyle |\kappa |<1} {\displaystyle |\kappa |<1} is the entropic index associated with the Kaniadakis entropy, β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} is the scale parameter, and α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} is the shape parameter or Weibull modulus.

The Weibull distribution is recovered as κ 0. {\displaystyle \kappa \rightarrow 0.} {\displaystyle \kappa \rightarrow 0.}

Cumulative distribution function

[edit ]

The cumulative distribution function of κ-Weibull distribution is given by

F κ ( x ) = 1 exp κ ( β x α ) {\displaystyle F_{\kappa }(x)=1-\exp _{\kappa }(-\beta x^{\alpha })} {\displaystyle F_{\kappa }(x)=1-\exp _{\kappa }(-\beta x^{\alpha })}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}. The cumulative Weibull distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

Survival distribution and hazard functions

[edit ]

The survival distribution function of κ-Weibull distribution is given by

S κ ( x ) = exp κ ( β x α ) {\displaystyle S_{\kappa }(x)=\exp _{\kappa }(-\beta x^{\alpha })} {\displaystyle S_{\kappa }(x)=\exp _{\kappa }(-\beta x^{\alpha })}

valid for x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}. The survival Weibull distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}.

Comparison between the Kaniadakis κ-Weibull probability function and its cumulative.

The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:

S κ ( x ) d x = h κ S κ ( x ) {\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)} {\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)}

with S κ ( 0 ) = 1 {\displaystyle S_{\kappa }(0)=1} {\displaystyle S_{\kappa }(0)=1}, where h κ {\displaystyle h_{\kappa }} {\displaystyle h_{\kappa }} is the hazard function:

h κ = α β x α 1 1 + κ 2 β 2 x 2 α {\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}} {\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}}

The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:

S κ = e H κ ( x ) {\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}} {\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}}

where

H κ ( x ) = 0 x h κ ( z ) d z {\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz} {\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz}
H κ ( x ) = 1 κ arcsinh ( κ β x α ) {\displaystyle H_{\kappa }(x)={\frac {1}{\kappa }}{\textrm {arcsinh}}\left(\kappa \beta x^{\alpha }\right)} {\displaystyle H_{\kappa }(x)={\frac {1}{\kappa }}{\textrm {arcsinh}}\left(\kappa \beta x^{\alpha }\right)}

is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} {\displaystyle \kappa \rightarrow 0}: H ( x ) = β x α {\displaystyle H(x)=\beta x^{\alpha }} {\displaystyle H(x)=\beta x^{\alpha }} .

Properties

[edit ]

Moments, median and mode

[edit ]

The κ-Weibull distribution has moment of order m N {\displaystyle m\in \mathbb {N} } {\displaystyle m\in \mathbb {N} } given by

E [ X m ] = | 2 κ β | m / α 1 + κ m α Γ ( 1 2 κ m 2 α ) Γ ( 1 2 κ + m 2 α ) Γ ( 1 + m α ) {\displaystyle \operatorname {E} [X^{m}]={\frac {|2\kappa \beta |^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}} {\displaystyle \operatorname {E} [X^{m}]={\frac {|2\kappa \beta |^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}}

The median and the mode are:

x median ( F κ ) = β 1 / α ( ln κ ( 2 ) ) 1 / α {\displaystyle x_{\textrm {median}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }} {\displaystyle x_{\textrm {median}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }}
x mode = β 1 / α ( α 2 + 2 κ 2 ( α 1 ) 2 κ 2 ( α 2 κ 2 ) ) 1 / 2 α ( 1 + 4 κ 2 ( α 2 κ 2 ) ( α 1 ) 2 [ α 2 + 2 κ 2 ( α 1 ) ] 2 1 ) 1 / 2 α ( α > 1 ) {\displaystyle x_{\textrm {mode}}=\beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\Bigg )}^{1/2\alpha }{\Bigg (}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }\quad (\alpha >1)} {\displaystyle x_{\textrm {mode}}=\beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\Bigg )}^{1/2\alpha }{\Bigg (}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }\quad (\alpha >1)}

Quantiles

[edit ]

The quantiles are given by the following expression

x quantile ( F κ ) = β 1 / α [ ln κ ( 1 1 F κ ) ] 1 / α {\displaystyle x_{\textrm {quantile}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }} {\displaystyle x_{\textrm {quantile}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }}

with 0 F κ 1 {\displaystyle 0\leq F_{\kappa }\leq 1} {\displaystyle 0\leq F_{\kappa }\leq 1}.

Gini coefficient

[edit ]

The Gini coefficient is:[3]

G κ = 1 α + κ α + 1 2 κ Γ ( 1 κ 1 2 α ) Γ ( 1 κ + 1 2 α ) Γ ( 1 2 κ + 1 2 α ) Γ ( 1 2 κ 1 2 α ) {\displaystyle \operatorname {G} _{\kappa }=1-{\frac {\alpha +\kappa }{\alpha +{\frac {1}{2}}\kappa }}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}-{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {1}{2\alpha }}{\Big )}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{2\alpha }}{\Big )}}}} {\displaystyle \operatorname {G} _{\kappa }=1-{\frac {\alpha +\kappa }{\alpha +{\frac {1}{2}}\kappa }}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}-{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {1}{2\alpha }}{\Big )}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{2\alpha }}{\Big )}}}}

Asymptotic behavior

[edit ]

The κ-Weibull distribution II behaves asymptotically as follows:[3]

lim x + f κ ( x ) α κ ( 2 κ β ) 1 / κ x 1 α / κ {\displaystyle \lim _{x\to +\infty }f_{\kappa }(x)\sim {\frac {\alpha }{\kappa }}(2\kappa \beta )^{-1/\kappa }x^{-1-\alpha /\kappa }} {\displaystyle \lim _{x\to +\infty }f_{\kappa }(x)\sim {\frac {\alpha }{\kappa }}(2\kappa \beta )^{-1/\kappa }x^{-1-\alpha /\kappa }}
lim x 0 + f κ ( x ) = α β x α 1 {\displaystyle \lim _{x\to 0^{+}}f_{\kappa }(x)=\alpha \beta x^{\alpha -1}} {\displaystyle \lim _{x\to 0^{+}}f_{\kappa }(x)=\alpha \beta x^{\alpha -1}}
[edit ]
  • The κ-Weibull distribution is a generalization of:
  • A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when α = 2 {\displaystyle \alpha =2} {\displaystyle \alpha =2} and a Rayleigh distribution when κ = 0 {\displaystyle \kappa =0} {\displaystyle \kappa =0} and α = 2 {\displaystyle \alpha =2} {\displaystyle \alpha =2}.

Applications

[edit ]

The κ-Weibull distribution has been applied in several areas, such as:

  • In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.[1] [4] [5]
  • In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law,[6] and the interval distributions of seismic data, modeling extreme-event return intervals.[7] [8]
  • In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.[9]

See also

[edit ]

References

[edit ]
  1. ^ a b Clementi, F.; Gallegati, M.; Kaniadakis, G. (2007). "κ-generalized statistics in personal income distribution". The European Physical Journal B. 57 (2): 187–193. arXiv:physics/0607293 . Bibcode:2007EPJB...57..187C. doi:10.1140/epjb/e2007-00120-9. ISSN 1434-6028. S2CID 15777288.
  2. ^ Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. (2008). "The -generalized distribution: A new descriptive model for the size distribution of incomes". Physica A: Statistical Mechanics and Its Applications. 387 (13): 3201–3208. arXiv:0710.3645 . doi:10.1016/j.physa.2008年01月10日9. S2CID 2590064.
  3. ^ a b c Kaniadakis, G. (2021年01月01日). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743 . Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
  4. ^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (October 2010). "A model of personal income distribution with application to Italian data". Empirical Economics. 39 (2): 559–591. doi:10.1007/s00181-009-0318-2. ISSN 0377-7332. S2CID 154273794.
  5. ^ Clementi, F; Gallegati, M; Kaniadakis, G (2012年12月06日). "A generalized statistical model for the size distribution of wealth". Journal of Statistical Mechanics: Theory and Experiment. 2012 (12): P12006. arXiv:1209.4787 . Bibcode:2012JSMTE..12..006C. doi:10.1088/1742-5468/2012/12/P12006. ISSN 1742-5468. S2CID 18961951.
  6. ^ da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode:2021CSF...14310622D. doi:10.1016/j.chaos.2020.110622. S2CID 234063959.
  7. ^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014年05月28日). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv:1308.1881 . Bibcode:2014PhRvE..89e2142H. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. S2CID 22310350.
  8. ^ Hristopulos, Dionissios; Petrakis, Manolis; Kaniadakis, Giorgio (2015年03月09日). "Weakest-Link Scaling and Extreme Events in Finite-Sized Systems". Entropy. 17 (3): 1103–1122. Bibcode:2015Entrp..17.1103H. doi:10.3390/e17031103 . ISSN 1099-4300.
  9. ^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. Bibcode:2020NatSR..1019949K. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMC 7673996 . PMID 33203913.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /