Kaniadakis Weibull distribution
Find sources: "Kaniadakis Weibull distribution" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)
Probability density function | |||
Cumulative distribution function | |||
Parameters |
{\displaystyle 0<\kappa <1} {\displaystyle \alpha >0} rate shape (real) {\displaystyle \beta >0} rate (real) | ||
---|---|---|---|
Support | {\displaystyle x\in [0,+\infty )} | ||
{\displaystyle {\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })} | |||
CDF | {\displaystyle 1-\exp _{\kappa }(-\beta x^{\alpha })} | ||
Quantile | {\displaystyle \beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }} | ||
Median | {\displaystyle \beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }} | ||
Mode | {\displaystyle \beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }} | ||
Method of moments | {\displaystyle {\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}} |
The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution.[1] [2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.
Definitions
[edit ]Probability density function
[edit ]The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function:[3]
- {\displaystyle f_{_{\kappa }}(x)={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\exp _{\kappa }(-\beta x^{\alpha })}
valid for {\displaystyle x\geq 0}, where {\displaystyle |\kappa |<1} is the entropic index associated with the Kaniadakis entropy, {\displaystyle \beta >0} is the scale parameter, and {\displaystyle \alpha >0} is the shape parameter or Weibull modulus.
The Weibull distribution is recovered as {\displaystyle \kappa \rightarrow 0.}
Cumulative distribution function
[edit ]The cumulative distribution function of κ-Weibull distribution is given by
{\displaystyle F_{\kappa }(x)=1-\exp _{\kappa }(-\beta x^{\alpha })}
valid for {\displaystyle x\geq 0}. The cumulative Weibull distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}.
Survival distribution and hazard functions
[edit ]The survival distribution function of κ-Weibull distribution is given by
- {\displaystyle S_{\kappa }(x)=\exp _{\kappa }(-\beta x^{\alpha })}
valid for {\displaystyle x\geq 0}. The survival Weibull distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}.
The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:
{\displaystyle {\frac {S_{\kappa }(x)}{dx}}=-h_{\kappa }S_{\kappa }(x)}
with {\displaystyle S_{\kappa }(0)=1}, where {\displaystyle h_{\kappa }} is the hazard function:
- {\displaystyle h_{\kappa }={\frac {\alpha \beta x^{\alpha -1}}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}}
The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:
- {\displaystyle S_{\kappa }=e^{-H_{\kappa }(x)}}
where
- {\displaystyle H_{\kappa }(x)=\int _{0}^{x}h_{\kappa }(z)dz}
- {\displaystyle H_{\kappa }(x)={\frac {1}{\kappa }}{\textrm {arcsinh}}\left(\kappa \beta x^{\alpha }\right)}
is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit {\displaystyle \kappa \rightarrow 0}: {\displaystyle H(x)=\beta x^{\alpha }} .
Properties
[edit ]Moments, median and mode
[edit ]The κ-Weibull distribution has moment of order {\displaystyle m\in \mathbb {N} } given by
- {\displaystyle \operatorname {E} [X^{m}]={\frac {|2\kappa \beta |^{-m/\alpha }}{1+\kappa {\frac {m}{\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}\Gamma {\Big (}1+{\frac {m}{\alpha }}{\Big )}}
The median and the mode are:
- {\displaystyle x_{\textrm {median}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg (}\ln _{\kappa }(2){\Bigg )}^{1/\alpha }}
- {\displaystyle x_{\textrm {mode}}=\beta ^{-1/\alpha }{\Bigg (}{\frac {\alpha ^{2}+2\kappa ^{2}(\alpha -1)}{2\kappa ^{2}(\alpha ^{2}-\kappa ^{2})}}{\Bigg )}^{1/2\alpha }{\Bigg (}{\sqrt {1+{\frac {4\kappa ^{2}(\alpha ^{2}-\kappa ^{2})(\alpha -1)^{2}}{[\alpha ^{2}+2\kappa ^{2}(\alpha -1)]^{2}}}}}-1{\Bigg )}^{1/2\alpha }\quad (\alpha >1)}
Quantiles
[edit ]The quantiles are given by the following expression
{\displaystyle x_{\textrm {quantile}}(F_{\kappa })=\beta ^{-1/\alpha }{\Bigg [}\ln _{\kappa }{\Bigg (}{\frac {1}{1-F_{\kappa }}}{\Bigg )}{\Bigg ]}^{1/\alpha }}
with {\displaystyle 0\leq F_{\kappa }\leq 1}.
Gini coefficient
[edit ]The Gini coefficient is:[3]
{\displaystyle \operatorname {G} _{\kappa }=1-{\frac {\alpha +\kappa }{\alpha +{\frac {1}{2}}\kappa }}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}-{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {1}{2\alpha }}{\Big )}}}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa }}+{\frac {1}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{2\kappa }}-{\frac {1}{2\alpha }}{\Big )}}}}
Asymptotic behavior
[edit ]The κ-Weibull distribution II behaves asymptotically as follows:[3]
- {\displaystyle \lim _{x\to +\infty }f_{\kappa }(x)\sim {\frac {\alpha }{\kappa }}(2\kappa \beta )^{-1/\kappa }x^{-1-\alpha /\kappa }}
- {\displaystyle \lim _{x\to 0^{+}}f_{\kappa }(x)=\alpha \beta x^{\alpha -1}}
Related distributions
[edit ]- The κ-Weibull distribution is a generalization of:
- κ-Exponential distribution of type II, when {\displaystyle \alpha =1};
- Exponential distribution when {\displaystyle \kappa =0} and {\displaystyle \alpha =1}.
- A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when {\displaystyle \alpha =2} and a Rayleigh distribution when {\displaystyle \kappa =0} and {\displaystyle \alpha =2}.
Applications
[edit ]The κ-Weibull distribution has been applied in several areas, such as:
- In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.[1] [4] [5]
- In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law,[6] and the interval distributions of seismic data, modeling extreme-event return intervals.[7] [8]
- In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.[9]
See also
[edit ]- Giorgio Kaniadakis
- Kaniadakis statistics
- Kaniadakis distribution
- Kaniadakis κ-Exponential distribution
- Kaniadakis κ-Gaussian distribution
- Kaniadakis κ-Gamma distribution
- Kaniadakis κ-Logistic distribution
- Kaniadakis κ-Erlang distribution
References
[edit ]- ^ a b Clementi, F.; Gallegati, M.; Kaniadakis, G. (2007). "κ-generalized statistics in personal income distribution". The European Physical Journal B. 57 (2): 187–193. arXiv:physics/0607293 . Bibcode:2007EPJB...57..187C. doi:10.1140/epjb/e2007-00120-9. ISSN 1434-6028. S2CID 15777288.
- ^ Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. (2008). "The -generalized distribution: A new descriptive model for the size distribution of incomes". Physica A: Statistical Mechanics and Its Applications. 387 (13): 3201–3208. arXiv:0710.3645 . doi:10.1016/j.physa.2008年01月10日9. S2CID 2590064.
- ^ a b c Kaniadakis, G. (2021年01月01日). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743 . Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
- ^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (October 2010). "A model of personal income distribution with application to Italian data". Empirical Economics. 39 (2): 559–591. doi:10.1007/s00181-009-0318-2. ISSN 0377-7332. S2CID 154273794.
- ^ Clementi, F; Gallegati, M; Kaniadakis, G (2012年12月06日). "A generalized statistical model for the size distribution of wealth". Journal of Statistical Mechanics: Theory and Experiment. 2012 (12): P12006. arXiv:1209.4787 . Bibcode:2012JSMTE..12..006C. doi:10.1088/1742-5468/2012/12/P12006. ISSN 1742-5468. S2CID 18961951.
- ^ da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode:2021CSF...14310622D. doi:10.1016/j.chaos.2020.110622. S2CID 234063959.
- ^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014年05月28日). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv:1308.1881 . Bibcode:2014PhRvE..89e2142H. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. S2CID 22310350.
- ^ Hristopulos, Dionissios; Petrakis, Manolis; Kaniadakis, Giorgio (2015年03月09日). "Weakest-Link Scaling and Extreme Events in Finite-Sized Systems". Entropy. 17 (3): 1103–1122. Bibcode:2015Entrp..17.1103H. doi:10.3390/e17031103 . ISSN 1099-4300.
- ^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. Bibcode:2020NatSR..1019949K. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMC 7673996 . PMID 33203913.