Inverse matrix gamma distribution
Find sources: "Inverse matrix gamma distribution" – news · newspapers · books · scholar · JSTOR (April 2024)
Notation | {\displaystyle {\rm {IMG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Psi }})} | ||
---|---|---|---|
Parameters |
{\displaystyle \alpha >(p-1)/2} shape parameter | ||
Support | {\displaystyle \mathbf {X} } positive-definite real {\displaystyle p\times p} matrix | ||
{\displaystyle {\frac {|{\boldsymbol {\Psi }}|^{\alpha }}{\beta ^{p\alpha }\Gamma _{p}(\alpha )}}|\mathbf {X} |^{-\alpha -(p+1)/2}\exp \left(-{\frac {1}{\beta }}{\rm {tr}}\left({\boldsymbol {\Psi }}\mathbf {X} ^{-1}\right)\right)}
|
In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices.[1] It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.[citation needed ]
This reduces to the inverse Wishart distribution with {\displaystyle \nu } degrees of freedom when {\displaystyle \beta =2,\alpha ={\frac {\nu }{2}}}.
See also
[edit ]- inverse Wishart distribution.
- matrix gamma distribution.
- matrix normal distribution.
- matrix t-distribution.
- Wishart distribution.
References
[edit ]- ^ Iranmanesha, Anis; Arashib, M.; Tabatabaeya, S. M. M. (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics. 5 (2): 33–43.