Jump to content
Wikipedia The Free Encyclopedia

Inverse matrix gamma distribution

From Wikipedia, the free encyclopedia
This article relies largely or entirely on a single source . Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Inverse matrix gamma distribution" – news · newspapers · books · scholar · JSTOR
(April 2024)
Inverse matrix gamma
Notation I M G p ( α , β , Ψ ) {\displaystyle {\rm {IMG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Psi }})} {\displaystyle {\rm {IMG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Psi }})}
Parameters

α > ( p 1 ) / 2 {\displaystyle \alpha >(p-1)/2} {\displaystyle \alpha >(p-1)/2} shape parameter
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} scale parameter

Ψ {\displaystyle {\boldsymbol {\Psi }}} {\displaystyle {\boldsymbol {\Psi }}} scale (positive-definite real p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix)
Support X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } positive-definite real p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix
PDF

| Ψ | α β p α Γ p ( α ) | X | α ( p + 1 ) / 2 exp ( 1 β t r ( Ψ X 1 ) ) {\displaystyle {\frac {|{\boldsymbol {\Psi }}|^{\alpha }}{\beta ^{p\alpha }\Gamma _{p}(\alpha )}}|\mathbf {X} |^{-\alpha -(p+1)/2}\exp \left(-{\frac {1}{\beta }}{\rm {tr}}\left({\boldsymbol {\Psi }}\mathbf {X} ^{-1}\right)\right)} {\displaystyle {\frac {|{\boldsymbol {\Psi }}|^{\alpha }}{\beta ^{p\alpha }\Gamma _{p}(\alpha )}}|\mathbf {X} |^{-\alpha -(p+1)/2}\exp \left(-{\frac {1}{\beta }}{\rm {tr}}\left({\boldsymbol {\Psi }}\mathbf {X} ^{-1}\right)\right)}

In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices.[1] It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.[citation needed ]

This reduces to the inverse Wishart distribution with ν {\displaystyle \nu } {\displaystyle \nu } degrees of freedom when β = 2 , α = ν 2 {\displaystyle \beta =2,\alpha ={\frac {\nu }{2}}} {\displaystyle \beta =2,\alpha ={\frac {\nu }{2}}}.

See also

[edit ]

References

[edit ]
  1. ^ Iranmanesha, Anis; Arashib, M.; Tabatabaeya, S. M. M. (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics. 5 (2): 33–43.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families


Stub icon

This article about matrices is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /