Jump to content
Wikipedia The Free Encyclopedia

Matrix gamma distribution

From Wikipedia, the free encyclopedia
Matrix gamma
Notation M G p ( α , β , Σ ) {\displaystyle {\rm {MG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Sigma }})} {\displaystyle {\rm {MG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Sigma }})}
Parameters

α > p 1 2 {\displaystyle \alpha >{\frac {p-1}{2}}} {\displaystyle \alpha >{\frac {p-1}{2}}} shape parameter (real)
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} scale parameter

Σ {\displaystyle {\boldsymbol {\Sigma }}} {\displaystyle {\boldsymbol {\Sigma }}} scale (positive-definite real p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix)
Support X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } positive-definite real p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix
PDF

| Σ | α β p α Γ p ( α ) | X | α p + 1 2 exp ( t r ( 1 β Σ 1 X ) ) {\displaystyle {\frac {|{\boldsymbol {\Sigma }}|^{-\alpha }}{\beta ^{p\alpha },円\Gamma _{p}(\alpha )}}|\mathbf {X} |^{\alpha -{\frac {p+1}{2}}}\exp \left({\rm {tr}}\left(-{\frac {1}{\beta }}{\boldsymbol {\Sigma }}^{-1}\mathbf {X} \right)\right)} {\displaystyle {\frac {|{\boldsymbol {\Sigma }}|^{-\alpha }}{\beta ^{p\alpha },円\Gamma _{p}(\alpha )}}|\mathbf {X} |^{\alpha -{\frac {p+1}{2}}}\exp \left({\rm {tr}}\left(-{\frac {1}{\beta }}{\boldsymbol {\Sigma }}^{-1}\mathbf {X} \right)\right)}

In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices.[1] It is effectively a different parametrization of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.[1]

A matrix gamma distributions is identical to a Wishart distribution with β Σ = 2 V , α = n 2 . {\displaystyle \beta {\boldsymbol {\Sigma }}=2V,\alpha ={\frac {n}{2}}.} {\displaystyle \beta {\boldsymbol {\Sigma }}=2V,\alpha ={\frac {n}{2}}.}

Notice that the parameters β {\displaystyle \beta } {\displaystyle \beta } and Σ {\displaystyle {\boldsymbol {\Sigma }}} {\displaystyle {\boldsymbol {\Sigma }}} are not identified; the density depends on these two parameters through the product β Σ {\displaystyle \beta {\boldsymbol {\Sigma }}} {\displaystyle \beta {\boldsymbol {\Sigma }}}.

See also

[edit ]

Notes

[edit ]
  1. ^ a b Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.

References

[edit ]
  • Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families


Stub icon

This article about matrices is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /