Matrix gamma distribution
Notation | {\displaystyle {\rm {MG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Sigma }})} | ||
---|---|---|---|
Parameters |
{\displaystyle \alpha >{\frac {p-1}{2}}} shape parameter (real) | ||
Support | {\displaystyle \mathbf {X} } positive-definite real {\displaystyle p\times p} matrix | ||
{\displaystyle {\frac {|{\boldsymbol {\Sigma }}|^{-\alpha }}{\beta ^{p\alpha },円\Gamma _{p}(\alpha )}}|\mathbf {X} |^{\alpha -{\frac {p+1}{2}}}\exp \left({\rm {tr}}\left(-{\frac {1}{\beta }}{\boldsymbol {\Sigma }}^{-1}\mathbf {X} \right)\right)}
|
In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices.[1] It is effectively a different parametrization of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.[1]
A matrix gamma distributions is identical to a Wishart distribution with {\displaystyle \beta {\boldsymbol {\Sigma }}=2V,\alpha ={\frac {n}{2}}.}
Notice that the parameters {\displaystyle \beta } and {\displaystyle {\boldsymbol {\Sigma }}} are not identified; the density depends on these two parameters through the product {\displaystyle \beta {\boldsymbol {\Sigma }}}.
See also
[edit ]- inverse matrix gamma distribution.
- matrix normal distribution.
- matrix t-distribution.
- Wishart distribution.
Notes
[edit ]- ^ a b Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.
References
[edit ]- Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462