Jump to content
Wikipedia The Free Encyclopedia

Fisher's z-distribution

From Wikipedia, the free encyclopedia
Statistical distribution
Not to be confused with Fisher z-transformation.
"z-distribution" redirects here. For the distribution related to z-scores, see Normal distribution § Standard normal distribution.
Fisher's z
Probability density function
Parameters d 1 > 0 ,   d 2 > 0 {\displaystyle d_{1}>0,\ d_{2}>0} {\displaystyle d_{1}>0,\ d_{2}>0} deg. of freedom
Support x ( ; + ) {\displaystyle x\in (-\infty ;+\infty )\!} {\displaystyle x\in (-\infty ;+\infty )\!}
PDF 2 d 1 d 1 / 2 d 2 d 2 / 2 B ( d 1 / 2 , d 2 / 2 ) e d 1 x ( d 1 e 2 x + d 2 ) ( d 1 + d 2 ) / 2 {\displaystyle {\frac {2d_{1}^{d_{1}/2}d_{2}^{d_{2}/2}}{B(d_{1}/2,d_{2}/2)}}{\frac {e^{d_{1}x}}{\left(d_{1}e^{2x}+d_{2}\right)^{\left(d_{1}+d_{2}\right)/2}}}\!} {\displaystyle {\frac {2d_{1}^{d_{1}/2}d_{2}^{d_{2}/2}}{B(d_{1}/2,d_{2}/2)}}{\frac {e^{d_{1}x}}{\left(d_{1}e^{2x}+d_{2}\right)^{\left(d_{1}+d_{2}\right)/2}}}\!}
Mode 0 {\displaystyle 0} {\displaystyle 0}
Ronald Fisher

Fisher's z-distribution is the statistical distribution of half the logarithm of an F-distribution variate:

z = 1 2 log F {\displaystyle z={\frac {1}{2}}\log F} {\displaystyle z={\frac {1}{2}}\log F}

It was first described by Ronald Fisher in a paper delivered at the International Mathematical Congress of 1924 in Toronto.[1] Nowadays one usually uses the F-distribution instead.

The probability density function and cumulative distribution function can be found by using the F-distribution at the value of x = e 2 x {\displaystyle x'=e^{2x},円} {\displaystyle x'=e^{2x},円}. However, the mean and variance do not follow the same transformation.

The probability density function is[2] [3]

f ( x ; d 1 , d 2 ) = 2 d 1 d 1 / 2 d 2 d 2 / 2 B ( d 1 / 2 , d 2 / 2 ) e d 1 x ( d 1 e 2 x + d 2 ) ( d 1 + d 2 ) / 2 , {\displaystyle f(x;d_{1},d_{2})={\frac {2d_{1}^{d_{1}/2}d_{2}^{d_{2}/2}}{B(d_{1}/2,d_{2}/2)}}{\frac {e^{d_{1}x}}{\left(d_{1}e^{2x}+d_{2}\right)^{(d_{1}+d_{2})/2}}},} {\displaystyle f(x;d_{1},d_{2})={\frac {2d_{1}^{d_{1}/2}d_{2}^{d_{2}/2}}{B(d_{1}/2,d_{2}/2)}}{\frac {e^{d_{1}x}}{\left(d_{1}e^{2x}+d_{2}\right)^{(d_{1}+d_{2})/2}}},}

where B is the beta function.

When the degrees of freedom becomes large ( d 1 , d 2 {\displaystyle d_{1},d_{2}\rightarrow \infty } {\displaystyle d_{1},d_{2}\rightarrow \infty }), the distribution approaches normality with mean[2]

x ¯ = 1 2 ( 1 d 2 1 d 1 ) {\displaystyle {\bar {x}}={\frac {1}{2}}\left({\frac {1}{d_{2}}}-{\frac {1}{d_{1}}}\right)} {\displaystyle {\bar {x}}={\frac {1}{2}}\left({\frac {1}{d_{2}}}-{\frac {1}{d_{1}}}\right)}

and variance

σ x 2 = 1 2 ( 1 d 1 + 1 d 2 ) . {\displaystyle \sigma _{x}^{2}={\frac {1}{2}}\left({\frac {1}{d_{1}}}+{\frac {1}{d_{2}}}\right).} {\displaystyle \sigma _{x}^{2}={\frac {1}{2}}\left({\frac {1}{d_{1}}}+{\frac {1}{d_{2}}}\right).}
[edit ]
  • If X FisherZ ( n , m ) {\displaystyle X\sim \operatorname {FisherZ} (n,m)} {\displaystyle X\sim \operatorname {FisherZ} (n,m)} then e 2 X F ( n , m ) {\displaystyle e^{2X}\sim \operatorname {F} (n,m),円} {\displaystyle e^{2X}\sim \operatorname {F} (n,m),円} (F-distribution)
  • If X F ( n , m ) {\displaystyle X\sim \operatorname {F} (n,m)} {\displaystyle X\sim \operatorname {F} (n,m)} then log X 2 FisherZ ( n , m ) {\displaystyle {\tfrac {\log X}{2}}\sim \operatorname {FisherZ} (n,m)} {\displaystyle {\tfrac {\log X}{2}}\sim \operatorname {FisherZ} (n,m)}

References

[edit ]
  1. ^ Fisher, R. A. (1924). "On a Distribution Yielding the Error Functions of Several Well Known Statistics" (PDF). Proceedings of the International Congress of Mathematics, Toronto. 2: 805–813. Archived from the original (PDF) on April 12, 2011.
  2. ^ a b Leo A. Aroian (December 1941). "A study of R. A. Fisher's z distribution and the related F distribution". The Annals of Mathematical Statistics. 12 (4): 429–448. doi:10.1214/aoms/1177731681 . JSTOR 2235955.
  3. ^ Charles Ernest Weatherburn (1961). A first course in mathematical statistics.
[edit ]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /