Jump to content
Wikipedia The Free Encyclopedia

Scaled inverse chi-squared distribution

From Wikipedia, the free encyclopedia
Probability distribution
Scaled inverse chi-squared
Probability density function
Cumulative distribution function
Parameters ν > 0 {\displaystyle \nu >0,円} {\displaystyle \nu >0,円}
τ 2 > 0 {\displaystyle \tau ^{2}>0,円} {\displaystyle \tau ^{2}>0,円}
Support x ( 0 , ) {\displaystyle x\in (0,\infty )} {\displaystyle x\in (0,\infty )}
PDF ( τ 2 ν / 2 ) ν / 2 Γ ( ν / 2 )   exp [ ν τ 2 2 x ] x 1 + ν / 2 {\displaystyle {\frac {(\tau ^{2}\nu /2)^{\nu /2}}{\Gamma (\nu /2)}}~{\frac {\exp \left[{\frac {-\nu \tau ^{2}}{2x}}\right]}{x^{1+\nu /2}}}} {\displaystyle {\frac {(\tau ^{2}\nu /2)^{\nu /2}}{\Gamma (\nu /2)}}~{\frac {\exp \left[{\frac {-\nu \tau ^{2}}{2x}}\right]}{x^{1+\nu /2}}}}
CDF Γ ( ν 2 , τ 2 ν 2 x ) / Γ ( ν 2 ) {\displaystyle \Gamma \left({\frac {\nu }{2}},{\frac {\tau ^{2}\nu }{2x}}\right)\left/\Gamma \left({\frac {\nu }{2}}\right)\right.} {\displaystyle \Gamma \left({\frac {\nu }{2}},{\frac {\tau ^{2}\nu }{2x}}\right)\left/\Gamma \left({\frac {\nu }{2}}\right)\right.}
Mean ν τ 2 ν 2 {\displaystyle {\frac {\nu \tau ^{2}}{\nu -2}}} {\displaystyle {\frac {\nu \tau ^{2}}{\nu -2}}} for ν > 2 {\displaystyle \nu >2,円} {\displaystyle \nu >2,円}
Mode ν τ 2 ν + 2 {\displaystyle {\frac {\nu \tau ^{2}}{\nu +2}}} {\displaystyle {\frac {\nu \tau ^{2}}{\nu +2}}}
Variance 2 ν 2 τ 4 ( ν 2 ) 2 ( ν 4 ) {\displaystyle {\frac {2\nu ^{2}\tau ^{4}}{(\nu -2)^{2}(\nu -4)}}} {\displaystyle {\frac {2\nu ^{2}\tau ^{4}}{(\nu -2)^{2}(\nu -4)}}}for ν > 4 {\displaystyle \nu >4,円} {\displaystyle \nu >4,円}
Skewness 4 ν 6 2 ( ν 4 ) {\displaystyle {\frac {4}{\nu -6}}{\sqrt {2(\nu -4)}}} {\displaystyle {\frac {4}{\nu -6}}{\sqrt {2(\nu -4)}}}for ν > 6 {\displaystyle \nu >6,円} {\displaystyle \nu >6,円}
Excess kurtosis 12 ( 5 ν 22 ) ( ν 6 ) ( ν 8 ) {\displaystyle {\frac {12(5\nu -22)}{(\nu -6)(\nu -8)}}} {\displaystyle {\frac {12(5\nu -22)}{(\nu -6)(\nu -8)}}}for ν > 8 {\displaystyle \nu >8,円} {\displaystyle \nu >8,円}
Entropy

ν 2 + ln ( τ 2 ν 2 Γ ( ν 2 ) ) {\displaystyle {\frac {\nu }{2}}\!+\!\ln \left({\frac {\tau ^{2}\nu }{2}}\Gamma \left({\frac {\nu }{2}}\right)\right)} {\displaystyle {\frac {\nu }{2}}\!+\!\ln \left({\frac {\tau ^{2}\nu }{2}}\Gamma \left({\frac {\nu }{2}}\right)\right)}

( 1 + ν 2 ) ψ ( ν 2 ) {\displaystyle \!-\!\left(1\!+\!{\frac {\nu }{2}}\right)\psi \left({\frac {\nu }{2}}\right)} {\displaystyle \!-\!\left(1\!+\!{\frac {\nu }{2}}\right)\psi \left({\frac {\nu }{2}}\right)}
MGF 2 Γ ( ν 2 ) ( τ 2 ν t 2 ) ν 4 K ν 2 ( 2 τ 2 ν t ) {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-\tau ^{2}\nu t}{2}}\right)^{\!\!{\frac {\nu }{4}}}\!\!K_{\frac {\nu }{2}}\left({\sqrt {-2\tau ^{2}\nu t}}\right)} {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-\tau ^{2}\nu t}{2}}\right)^{\!\!{\frac {\nu }{4}}}\!\!K_{\frac {\nu }{2}}\left({\sqrt {-2\tau ^{2}\nu t}}\right)}
CF 2 Γ ( ν 2 ) ( i τ 2 ν t 2 ) ν 4 K ν 2 ( 2 i τ 2 ν t ) {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-i\tau ^{2}\nu t}{2}}\right)^{\!\!{\frac {\nu }{4}}}\!\!K_{\frac {\nu }{2}}\left({\sqrt {-2i\tau ^{2}\nu t}}\right)} {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-i\tau ^{2}\nu t}{2}}\right)^{\!\!{\frac {\nu }{4}}}\!\!K_{\frac {\nu }{2}}\left({\sqrt {-2i\tau ^{2}\nu t}}\right)}

The scaled inverse chi-squared distribution ψ inv- χ 2 ( ν ) {\displaystyle \psi ,円{\mbox{inv-}}\chi ^{2}(\nu )} {\displaystyle \psi ,円{\mbox{inv-}}\chi ^{2}(\nu )}, where ψ {\displaystyle \psi } {\displaystyle \psi } is the scale parameter, equals the univariate inverse Wishart distribution W 1 ( ψ , ν ) {\displaystyle {\mathcal {W}}^{-1}(\psi ,\nu )} {\displaystyle {\mathcal {W}}^{-1}(\psi ,\nu )} with degrees of freedom ν {\displaystyle \nu } {\displaystyle \nu }.

This family of scaled inverse chi-squared distributions is linked to the inverse-chi-squared distribution and to the chi-squared distribution:

If X ψ inv- χ 2 ( ν ) {\displaystyle X\sim \psi ,円{\mbox{inv-}}\chi ^{2}(\nu )} {\displaystyle X\sim \psi ,円{\mbox{inv-}}\chi ^{2}(\nu )} then X / ψ inv- χ 2 ( ν ) {\displaystyle X/\psi \sim {\mbox{inv-}}\chi ^{2}(\nu )} {\displaystyle X/\psi \sim {\mbox{inv-}}\chi ^{2}(\nu )} as well as ψ / X χ 2 ( ν ) {\displaystyle \psi /X\sim \chi ^{2}(\nu )} {\displaystyle \psi /X\sim \chi ^{2}(\nu )} and 1 / X ψ 1 χ 2 ( ν ) {\displaystyle 1/X\sim \psi ^{-1}\chi ^{2}(\nu )} {\displaystyle 1/X\sim \psi ^{-1}\chi ^{2}(\nu )}.

Instead of ψ {\displaystyle \psi } {\displaystyle \psi }, the scaled inverse chi-squared distribution is however most frequently parametrized by the scale parameter τ 2 = ψ / ν {\displaystyle \tau ^{2}=\psi /\nu } {\displaystyle \tau ^{2}=\psi /\nu } and the distribution ν τ 2 inv- χ 2 ( ν ) {\displaystyle \nu \tau ^{2},円{\mbox{inv-}}\chi ^{2}(\nu )} {\displaystyle \nu \tau ^{2},円{\mbox{inv-}}\chi ^{2}(\nu )} is denoted by Scale-inv- χ 2 ( ν , τ 2 ) {\displaystyle {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} {\displaystyle {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})}.


In terms of τ 2 {\displaystyle \tau ^{2}} {\displaystyle \tau ^{2}} the above relations can be written as follows:

If X Scale-inv- χ 2 ( ν , τ 2 ) {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} then X ν τ 2 inv- χ 2 ( ν ) {\displaystyle {\frac {X}{\nu \tau ^{2}}}\sim {\mbox{inv-}}\chi ^{2}(\nu )} {\displaystyle {\frac {X}{\nu \tau ^{2}}}\sim {\mbox{inv-}}\chi ^{2}(\nu )} as well as ν τ 2 X χ 2 ( ν ) {\displaystyle {\frac {\nu \tau ^{2}}{X}}\sim \chi ^{2}(\nu )} {\displaystyle {\frac {\nu \tau ^{2}}{X}}\sim \chi ^{2}(\nu )} and 1 / X 1 ν τ 2 χ 2 ( ν ) {\displaystyle 1/X\sim {\frac {1}{\nu \tau ^{2}}}\chi ^{2}(\nu )} {\displaystyle 1/X\sim {\frac {1}{\nu \tau ^{2}}}\chi ^{2}(\nu )}.


This family of scaled inverse chi-squared distributions is a reparametrization of the inverse-gamma distribution.

Specifically, if

X ψ inv- χ 2 ( ν ) = Scale-inv- χ 2 ( ν , τ 2 ) {\displaystyle X\sim \psi ,円{\mbox{inv-}}\chi ^{2}(\nu )={\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} {\displaystyle X\sim \psi ,円{\mbox{inv-}}\chi ^{2}(\nu )={\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})}   then   X Inv-Gamma ( ν 2 , ψ 2 ) = Inv-Gamma ( ν 2 , ν τ 2 2 ) {\displaystyle X\sim {\textrm {Inv-Gamma}}\left({\frac {\nu }{2}},{\frac {\psi }{2}}\right)={\textrm {Inv-Gamma}}\left({\frac {\nu }{2}},{\frac {\nu \tau ^{2}}{2}}\right)} {\displaystyle X\sim {\textrm {Inv-Gamma}}\left({\frac {\nu }{2}},{\frac {\psi }{2}}\right)={\textrm {Inv-Gamma}}\left({\frac {\nu }{2}},{\frac {\nu \tau ^{2}}{2}}\right)}


Either form may be used to represent the maximum entropy distribution for a fixed first inverse moment ( E ( 1 / X ) ) {\displaystyle (E(1/X))} {\displaystyle (E(1/X))} and first logarithmic moment ( E ( ln ( X ) ) {\displaystyle (E(\ln(X))} {\displaystyle (E(\ln(X))}.

The scaled inverse chi-squared distribution also has a particular use in Bayesian statistics. Specifically, the scaled inverse chi-squared distribution can be used as a conjugate prior for the variance parameter of a normal distribution. The same prior in alternative parametrization is given by the inverse-gamma distribution.

Characterization

[edit ]

The probability density function of the scaled inverse chi-squared distribution extends over the domain x > 0 {\displaystyle x>0} {\displaystyle x>0} and is

f ( x ; ν , τ 2 ) = ( τ 2 ν / 2 ) ν / 2 Γ ( ν / 2 )   exp [ ν τ 2 2 x ] x 1 + ν / 2 {\displaystyle f(x;\nu ,\tau ^{2})={\frac {(\tau ^{2}\nu /2)^{\nu /2}}{\Gamma (\nu /2)}}~{\frac {\exp \left[{\frac {-\nu \tau ^{2}}{2x}}\right]}{x^{1+\nu /2}}}} {\displaystyle f(x;\nu ,\tau ^{2})={\frac {(\tau ^{2}\nu /2)^{\nu /2}}{\Gamma (\nu /2)}}~{\frac {\exp \left[{\frac {-\nu \tau ^{2}}{2x}}\right]}{x^{1+\nu /2}}}}

where ν {\displaystyle \nu } {\displaystyle \nu } is the degrees of freedom parameter and τ 2 {\displaystyle \tau ^{2}} {\displaystyle \tau ^{2}} is the scale parameter. The cumulative distribution function is

F ( x ; ν , τ 2 ) = Γ ( ν 2 , τ 2 ν 2 x ) / Γ ( ν 2 ) {\displaystyle F(x;\nu ,\tau ^{2})=\Gamma \left({\frac {\nu }{2}},{\frac {\tau ^{2}\nu }{2x}}\right)\left/\Gamma \left({\frac {\nu }{2}}\right)\right.} {\displaystyle F(x;\nu ,\tau ^{2})=\Gamma \left({\frac {\nu }{2}},{\frac {\tau ^{2}\nu }{2x}}\right)\left/\Gamma \left({\frac {\nu }{2}}\right)\right.}
= Q ( ν 2 , τ 2 ν 2 x ) {\displaystyle =Q\left({\frac {\nu }{2}},{\frac {\tau ^{2}\nu }{2x}}\right)} {\displaystyle =Q\left({\frac {\nu }{2}},{\frac {\tau ^{2}\nu }{2x}}\right)}

where Γ ( a , x ) {\displaystyle \Gamma (a,x)} {\displaystyle \Gamma (a,x)} is the incomplete gamma function, Γ ( x ) {\displaystyle \Gamma (x)} {\displaystyle \Gamma (x)} is the gamma function and Q ( a , x ) {\displaystyle Q(a,x)} {\displaystyle Q(a,x)} is a regularized gamma function. The characteristic function is

φ ( t ; ν , τ 2 ) = {\displaystyle \varphi (t;\nu ,\tau ^{2})=} {\displaystyle \varphi (t;\nu ,\tau ^{2})=}
2 Γ ( ν 2 ) ( i τ 2 ν t 2 ) ν 4 K ν 2 ( 2 i τ 2 ν t ) , {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-i\tau ^{2}\nu t}{2}}\right)^{\!\!{\frac {\nu }{4}}}\!\!K_{\frac {\nu }{2}}\left({\sqrt {-2i\tau ^{2}\nu t}}\right),} {\displaystyle {\frac {2}{\Gamma ({\frac {\nu }{2}})}}\left({\frac {-i\tau ^{2}\nu t}{2}}\right)^{\!\!{\frac {\nu }{4}}}\!\!K_{\frac {\nu }{2}}\left({\sqrt {-2i\tau ^{2}\nu t}}\right),}

where K ν 2 ( z ) {\displaystyle K_{\frac {\nu }{2}}(z)} {\displaystyle K_{\frac {\nu }{2}}(z)} is the modified Modified Bessel function of the second kind.

Parameter estimation

[edit ]

The maximum likelihood estimate of τ 2 {\displaystyle \tau ^{2}} {\displaystyle \tau ^{2}} is

τ 2 = n / i = 1 n 1 x i . {\displaystyle \tau ^{2}=n/\sum _{i=1}^{n}{\frac {1}{x_{i}}}.} {\displaystyle \tau ^{2}=n/\sum _{i=1}^{n}{\frac {1}{x_{i}}}.}

The maximum likelihood estimate of ν 2 {\displaystyle {\frac {\nu }{2}}} {\displaystyle {\frac {\nu }{2}}} can be found using Newton's method on:

ln ( ν 2 ) ψ ( ν 2 ) = 1 n i = 1 n ln ( x i ) ln ( τ 2 ) , {\displaystyle \ln \left({\frac {\nu }{2}}\right)-\psi \left({\frac {\nu }{2}}\right)={\frac {1}{n}}\sum _{i=1}^{n}\ln \left(x_{i}\right)-\ln \left(\tau ^{2}\right),} {\displaystyle \ln \left({\frac {\nu }{2}}\right)-\psi \left({\frac {\nu }{2}}\right)={\frac {1}{n}}\sum _{i=1}^{n}\ln \left(x_{i}\right)-\ln \left(\tau ^{2}\right),}

where ψ ( x ) {\displaystyle \psi (x)} {\displaystyle \psi (x)} is the digamma function. An initial estimate can be found by taking the formula for mean and solving it for ν . {\displaystyle \nu .} {\displaystyle \nu .} Let x ¯ = 1 n i = 1 n x i {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}} {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}} be the sample mean. Then an initial estimate for ν {\displaystyle \nu } {\displaystyle \nu } is given by:

ν 2 = x ¯ x ¯ τ 2 . {\displaystyle {\frac {\nu }{2}}={\frac {\bar {x}}{{\bar {x}}-\tau ^{2}}}.} {\displaystyle {\frac {\nu }{2}}={\frac {\bar {x}}{{\bar {x}}-\tau ^{2}}}.}

Bayesian estimation of the variance of a normal distribution

[edit ]

The scaled inverse chi-squared distribution has a second important application, in the Bayesian estimation of the variance of a Normal distribution.

According to Bayes' theorem, the posterior probability distribution for quantities of interest is proportional to the product of a prior distribution for the quantities and a likelihood function:

p ( σ 2 | D , I ) p ( σ 2 | I ) p ( D | σ 2 ) {\displaystyle p(\sigma ^{2}|D,I)\propto p(\sigma ^{2}|I)\;p(D|\sigma ^{2})} {\displaystyle p(\sigma ^{2}|D,I)\propto p(\sigma ^{2}|I)\;p(D|\sigma ^{2})}

where D represents the data and I represents any initial information about σ2 that we may already have.

The simplest scenario arises if the mean μ is already known; or, alternatively, if it is the conditional distribution of σ2 that is sought, for a particular assumed value of μ.

Then the likelihood term L2|D) = p(D2) has the familiar form

L ( σ 2 | D , μ ) = 1 ( 2 π σ ) n exp [ i n ( x i μ ) 2 2 σ 2 ] {\displaystyle {\mathcal {L}}(\sigma ^{2}|D,\mu )={\frac {1}{\left({\sqrt {2\pi }}\sigma \right)^{n}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}\right]} {\displaystyle {\mathcal {L}}(\sigma ^{2}|D,\mu )={\frac {1}{\left({\sqrt {2\pi }}\sigma \right)^{n}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}\right]}

Combining this with the rescaling-invariant prior p(σ2|I) = 1/σ2, which can be argued (e.g. following Jeffreys) to be the least informative possible prior for σ2 in this problem, gives a combined posterior probability

p ( σ 2 | D , I , μ ) 1 σ n + 2 exp [ i n ( x i μ ) 2 2 σ 2 ] {\displaystyle p(\sigma ^{2}|D,I,\mu )\propto {\frac {1}{\sigma ^{n+2}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}\right]} {\displaystyle p(\sigma ^{2}|D,I,\mu )\propto {\frac {1}{\sigma ^{n+2}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}\right]}

This form can be recognised as that of a scaled inverse chi-squared distribution, with parameters ν = n and τ2 = s2 = (1/n) Σ (xi-μ)2

Gelman and co-authors remark that the re-appearance of this distribution, previously seen in a sampling context, may seem remarkable; but given the choice of prior "this result is not surprising."[1]

In particular, the choice of a rescaling-invariant prior for σ2 has the result that the probability for the ratio of σ2 / s2 has the same form (independent of the conditioning variable) when conditioned on s2 as when conditioned on σ2:

p ( σ 2 s 2 | s 2 ) = p ( σ 2 s 2 | σ 2 ) {\displaystyle p({\tfrac {\sigma ^{2}}{s^{2}}}|s^{2})=p({\tfrac {\sigma ^{2}}{s^{2}}}|\sigma ^{2})} {\displaystyle p({\tfrac {\sigma ^{2}}{s^{2}}}|s^{2})=p({\tfrac {\sigma ^{2}}{s^{2}}}|\sigma ^{2})}

In the sampling-theory case, conditioned on σ2, the probability distribution for (1/s2) is a scaled inverse chi-squared distribution; and so the probability distribution for σ2 conditioned on s2, given a scale-agnostic prior, is also a scaled inverse chi-squared distribution.

Use as an informative prior

[edit ]

If more is known about the possible values of σ2, a distribution from the scaled inverse chi-squared family, such as Scale-inv-χ2(n0, s02) can be a convenient form to represent a more informative prior for σ2, as if from the result of n0 previous observations (though n0 need not necessarily be a whole number):

p ( σ 2 | I , μ ) 1 σ n 0 + 2 exp [ n 0 s 0 2 2 σ 2 ] {\displaystyle p(\sigma ^{2}|I^{\prime },\mu )\propto {\frac {1}{\sigma ^{n_{0}+2}}}\;\exp \left[-{\frac {n_{0}s_{0}^{2}}{2\sigma ^{2}}}\right]} {\displaystyle p(\sigma ^{2}|I^{\prime },\mu )\propto {\frac {1}{\sigma ^{n_{0}+2}}}\;\exp \left[-{\frac {n_{0}s_{0}^{2}}{2\sigma ^{2}}}\right]}

Such a prior would lead to the posterior distribution

p ( σ 2 | D , I , μ ) 1 σ n + n 0 + 2 exp [ n s 2 + n 0 s 0 2 2 σ 2 ] {\displaystyle p(\sigma ^{2}|D,I^{\prime },\mu )\propto {\frac {1}{\sigma ^{n+n_{0}+2}}}\;\exp \left[-{\frac {ns^{2}+n_{0}s_{0}^{2}}{2\sigma ^{2}}}\right]} {\displaystyle p(\sigma ^{2}|D,I^{\prime },\mu )\propto {\frac {1}{\sigma ^{n+n_{0}+2}}}\;\exp \left[-{\frac {ns^{2}+n_{0}s_{0}^{2}}{2\sigma ^{2}}}\right]}

which is itself a scaled inverse chi-squared distribution. The scaled inverse chi-squared distributions are thus a convenient conjugate prior family for σ2 estimation.

Estimation of variance when mean is unknown

[edit ]

If the mean is not known, the most uninformative prior that can be taken for it is arguably the translation-invariant prior p(μ|I) ∝ const., which gives the following joint posterior distribution for μ and σ2,

p ( μ , σ 2 D , I ) 1 σ n + 2 exp [ i n ( x i μ ) 2 2 σ 2 ] = 1 σ n + 2 exp [ i n ( x i x ¯ ) 2 2 σ 2 ] exp [ n ( μ x ¯ ) 2 2 σ 2 ] {\displaystyle {\begin{aligned}p(\mu ,\sigma ^{2}\mid D,I)&\propto {\frac {1}{\sigma ^{n+2}}}\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}\right]\\&={\frac {1}{\sigma ^{n+2}}}\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\exp \left[-{\frac {n(\mu -{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\end{aligned}}} {\displaystyle {\begin{aligned}p(\mu ,\sigma ^{2}\mid D,I)&\propto {\frac {1}{\sigma ^{n+2}}}\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-\mu )^{2}}{2\sigma ^{2}}}\right]\\&={\frac {1}{\sigma ^{n+2}}}\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\exp \left[-{\frac {n(\mu -{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\end{aligned}}}

The marginal posterior distribution for σ2 is obtained from the joint posterior distribution by integrating out over μ,

p ( σ 2 | D , I ) 1 σ n + 2 exp [ i n ( x i x ¯ ) 2 2 σ 2 ] exp [ n ( μ x ¯ ) 2 2 σ 2 ] d μ = 1 σ n + 2 exp [ i n ( x i x ¯ ) 2 2 σ 2 ] 2 π σ 2 / n ( σ 2 ) ( n + 1 ) / 2 exp [ ( n 1 ) s 2 2 σ 2 ] {\displaystyle {\begin{aligned}p(\sigma ^{2}|D,I)\;\propto \;&{\frac {1}{\sigma ^{n+2}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\;\int _{-\infty }^{\infty }\exp \left[-{\frac {n(\mu -{\bar {x}})^{2}}{2\sigma ^{2}}}\right]d\mu \\=\;&{\frac {1}{\sigma ^{n+2}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\;{\sqrt {2\pi \sigma ^{2}/n}}\\\propto \;&(\sigma ^{2})^{-(n+1)/2}\;\exp \left[-{\frac {(n-1)s^{2}}{2\sigma ^{2}}}\right]\end{aligned}}} {\displaystyle {\begin{aligned}p(\sigma ^{2}|D,I)\;\propto \;&{\frac {1}{\sigma ^{n+2}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\;\int _{-\infty }^{\infty }\exp \left[-{\frac {n(\mu -{\bar {x}})^{2}}{2\sigma ^{2}}}\right]d\mu \\=\;&{\frac {1}{\sigma ^{n+2}}}\;\exp \left[-{\frac {\sum _{i}^{n}(x_{i}-{\bar {x}})^{2}}{2\sigma ^{2}}}\right]\;{\sqrt {2\pi \sigma ^{2}/n}}\\\propto \;&(\sigma ^{2})^{-(n+1)/2}\;\exp \left[-{\frac {(n-1)s^{2}}{2\sigma ^{2}}}\right]\end{aligned}}}

This is again a scaled inverse chi-squared distribution, with parameters n 1 {\displaystyle \scriptstyle {n-1}\;} {\displaystyle \scriptstyle {n-1}\;} and s 2 = ( x i x ¯ ) 2 / ( n 1 ) {\displaystyle \scriptstyle {s^{2}=\sum (x_{i}-{\bar {x}})^{2}/(n-1)}} {\displaystyle \scriptstyle {s^{2}=\sum (x_{i}-{\bar {x}})^{2}/(n-1)}}.

[edit ]
  • If X Scale-inv- χ 2 ( ν , τ 2 ) {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} then k X Scale-inv- χ 2 ( ν , k τ 2 ) {\displaystyle kX\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,k\tau ^{2}),円} {\displaystyle kX\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,k\tau ^{2}),円}
  • If X inv- χ 2 ( ν ) {\displaystyle X\sim {\mbox{inv-}}\chi ^{2}(\nu ),円} {\displaystyle X\sim {\mbox{inv-}}\chi ^{2}(\nu ),円} (Inverse-chi-squared distribution) then X Scale-inv- χ 2 ( ν , 1 / ν ) {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,1/\nu ),円} {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,1/\nu ),円}
  • If X Scale-inv- χ 2 ( ν , τ 2 ) {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} then X τ 2 ν inv- χ 2 ( ν ) {\displaystyle {\frac {X}{\tau ^{2}\nu }}\sim {\mbox{inv-}}\chi ^{2}(\nu ),円} {\displaystyle {\frac {X}{\tau ^{2}\nu }}\sim {\mbox{inv-}}\chi ^{2}(\nu ),円} (Inverse-chi-squared distribution)
  • If X Scale-inv- χ 2 ( ν , τ 2 ) {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} {\displaystyle X\sim {\mbox{Scale-inv-}}\chi ^{2}(\nu ,\tau ^{2})} then X Inv-Gamma ( ν 2 , ν τ 2 2 ) {\displaystyle X\sim {\textrm {Inv-Gamma}}\left({\frac {\nu }{2}},{\frac {\nu \tau ^{2}}{2}}\right)} {\displaystyle X\sim {\textrm {Inv-Gamma}}\left({\frac {\nu }{2}},{\frac {\nu \tau ^{2}}{2}}\right)} (Inverse-gamma distribution)
  • Scaled inverse chi square distribution is a special case of type 5 Pearson distribution

References

[edit ]
  • Gelman, Andrew; et al. (2014). Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. p. 583. ISBN 978-1-4398-4095-5.
  1. ^ Gelman, Andrew; et al. (2014). Bayesian Data Analysis (Third ed.). Boca Raton: CRC Press. p. 65. ISBN 978-1-4398-4095-5.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /