Jump to content
Wikipedia The Free Encyclopedia

Matrix t-distribution

From Wikipedia, the free encyclopedia
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Matrix t-distribution" – news · newspapers · books · scholar · JSTOR
(April 2016) (Learn how and when to remove this message)
Matrix t
Notation T n , p ( ν , M , Σ , Ω ) {\displaystyle {\rm {T}}_{n,p}(\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} {\displaystyle {\rm {T}}_{n,p}(\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})}
Parameters

M {\displaystyle \mathbf {M} } {\displaystyle \mathbf {M} } location (real n × p {\displaystyle n\times p} {\displaystyle n\times p} matrix)
Ω {\displaystyle {\boldsymbol {\Omega }}} {\displaystyle {\boldsymbol {\Omega }}} scale (positive-definite real p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix)
Σ {\displaystyle {\boldsymbol {\Sigma }}} {\displaystyle {\boldsymbol {\Sigma }}} scale (positive-definite real n × n {\displaystyle n\times n} {\displaystyle n\times n} matrix)

ν > 0 {\displaystyle \nu >0} {\displaystyle \nu >0} degrees of freedom (real)
Support X R n × p {\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}} {\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}}
PDF

Γ p ( ν + n + p 1 2 ) ( π ) n p 2 Γ p ( ν + p 1 2 ) | Ω | n 2 | Σ | p 2 {\displaystyle {\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}} {\displaystyle {\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}}

× | I n + Σ 1 ( X M ) Ω 1 ( X M ) T | ν + n + p 1 2 {\displaystyle \times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}}} {\displaystyle \times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}}}
CDF No analytic expression
Mean M {\displaystyle \mathbf {M} } {\displaystyle \mathbf {M} } if ν > 1 {\displaystyle \nu >1} {\displaystyle \nu >1}, else undefined
Mode M {\displaystyle \mathbf {M} } {\displaystyle \mathbf {M} }
Variance c o v ( v e c ( X ) ) = Σ Ω ν 2 {\displaystyle \mathrm {cov} (\mathrm {vec} (\mathbf {X} ))={\frac {{\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }}}{\nu -2}}} {\displaystyle \mathrm {cov} (\mathrm {vec} (\mathbf {X} ))={\frac {{\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }}}{\nu -2}}} if ν > 2 {\displaystyle \nu >2} {\displaystyle \nu >2}, else undefined
CF see below

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.[1] [2]

The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution: If the matrix has only one row, or only one column, the distributions become equivalent to the corresponding (vector-)multivariate distribution. The matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse Wishart distribution placed over either of its covariance matrices,[1] and the multivariate t-distribution can be generated in a similar way.[2]

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.[3]

Definition

[edit ]

For a matrix t-distribution, the probability density function at the point X {\displaystyle \mathbf {X} } {\displaystyle \mathbf {X} } of an n × p {\displaystyle n\times p} {\displaystyle n\times p} space is

f ( X ; ν , M , Σ , Ω ) = K × | I n + Σ 1 ( X M ) Ω 1 ( X M ) T | ν + n + p 1 2 , {\displaystyle f(\mathbf {X} ;\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})=K\times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}},} {\displaystyle f(\mathbf {X} ;\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})=K\times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}},}

where the constant of integration K is given by

K = Γ p ( ν + n + p 1 2 ) ( π ) n p 2 Γ p ( ν + p 1 2 ) | Ω | n 2 | Σ | p 2 . {\displaystyle K={\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}.} {\displaystyle K={\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}.}

Here Γ p {\displaystyle \Gamma _{p}} {\displaystyle \Gamma _{p}} is the multivariate gamma function.

Properties

[edit ]

If X T n × p ( ν , M , Σ , Ω ) {\displaystyle \mathbf {X} \sim {\mathcal {T}}_{n\times p}(\nu ,\mathbf {M} ,\mathbf {\Sigma } ,\mathbf {\Omega } )} {\displaystyle \mathbf {X} \sim {\mathcal {T}}_{n\times p}(\nu ,\mathbf {M} ,\mathbf {\Sigma } ,\mathbf {\Omega } )}, then we have the following properties[2] :

Expected values

[edit ]

The mean, or expected value is, if ν > 1 {\displaystyle \nu >1} {\displaystyle \nu >1}:

E [ X ] = M {\displaystyle E[\mathbf {X} ]=\mathbf {M} } {\displaystyle E[\mathbf {X} ]=\mathbf {M} }

and we have the following second-order expectations, if ν > 2 {\displaystyle \nu >2} {\displaystyle \nu >2}:

E [ ( X M ) ( X M ) T ] = Σ tr ( Ω ) ν 2 {\displaystyle E[(\mathbf {X} -\mathbf {M} )(\mathbf {X} -\mathbf {M} )^{T}]={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {\Omega } )}{\nu -2}}} {\displaystyle E[(\mathbf {X} -\mathbf {M} )(\mathbf {X} -\mathbf {M} )^{T}]={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {\Omega } )}{\nu -2}}}
E [ ( X M ) T ( X M ) ] = Ω tr ( Σ ) ν 2 {\displaystyle E[(\mathbf {X} -\mathbf {M} )^{T}(\mathbf {X} -\mathbf {M} )]={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {\Sigma } )}{\nu -2}}} {\displaystyle E[(\mathbf {X} -\mathbf {M} )^{T}(\mathbf {X} -\mathbf {M} )]={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {\Sigma } )}{\nu -2}}}

where tr {\displaystyle \operatorname {tr} } {\displaystyle \operatorname {tr} } denotes trace.

More generally, for appropriately dimensioned matrices A,B,C:

E [ ( X M ) A ( X M ) T ] = Σ tr ( A T Ω ) ν 2 E [ ( X M ) T B ( X M ) ] = Ω tr ( B T Σ ) ν 2 E [ ( X M ) C ( X M ) ] = Σ C T Ω ν 2 {\displaystyle {\begin{aligned}E[(\mathbf {X} -\mathbf {M} )\mathbf {A} (\mathbf {X} -\mathbf {M} )^{T}]&={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {A} ^{T}\mathbf {\Omega } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )^{T}\mathbf {B} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {B} ^{T}\mathbf {\Sigma } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )\mathbf {C} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Sigma } \mathbf {C} ^{T}\mathbf {\Omega } }{\nu -2}}\end{aligned}}} {\displaystyle {\begin{aligned}E[(\mathbf {X} -\mathbf {M} )\mathbf {A} (\mathbf {X} -\mathbf {M} )^{T}]&={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {A} ^{T}\mathbf {\Omega } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )^{T}\mathbf {B} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {B} ^{T}\mathbf {\Sigma } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )\mathbf {C} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Sigma } \mathbf {C} ^{T}\mathbf {\Omega } }{\nu -2}}\end{aligned}}}

Transformation

[edit ]

Transpose transform:

X T T p × n ( ν , M T , Ω , Σ ) {\displaystyle \mathbf {X} ^{T}\sim {\mathcal {T}}_{p\times n}(\nu ,\mathbf {M} ^{T},\mathbf {\Omega } ,\mathbf {\Sigma } )} {\displaystyle \mathbf {X} ^{T}\sim {\mathcal {T}}_{p\times n}(\nu ,\mathbf {M} ^{T},\mathbf {\Omega } ,\mathbf {\Sigma } )}

Linear transform: let A (r-by-n), be of full rank r ≤ n and B (p-by-s), be of full rank s ≤ p, then:

A X B T r × s ( ν , A M B , A Σ A T , B T Ω B ) {\displaystyle \mathbf {AXB} \sim {\mathcal {T}}_{r\times s}(\nu ,\mathbf {AMB} ,\mathbf {A\Sigma A} ^{T},\mathbf {B} ^{T}\mathbf {\Omega B} )} {\displaystyle \mathbf {AXB} \sim {\mathcal {T}}_{r\times s}(\nu ,\mathbf {AMB} ,\mathbf {A\Sigma A} ^{T},\mathbf {B} ^{T}\mathbf {\Omega B} )}

The characteristic function and various other properties can be derived from the re-parameterised formulation (see below).

Re-parameterized matrix t-distribution

[edit ]
Re-parameterized matrix t
Notation T n , p ( α , β , M , Σ , Ω ) {\displaystyle {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} {\displaystyle {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})}
Parameters

M {\displaystyle \mathbf {M} } {\displaystyle \mathbf {M} } location (real n × p {\displaystyle n\times p} {\displaystyle n\times p} matrix)
Ω {\displaystyle {\boldsymbol {\Omega }}} {\displaystyle {\boldsymbol {\Omega }}} scale (positive-definite real p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix)
Σ {\displaystyle {\boldsymbol {\Sigma }}} {\displaystyle {\boldsymbol {\Sigma }}} scale (positive-definite real n × n {\displaystyle n\times n} {\displaystyle n\times n} matrix)
α > ( p 1 ) / 2 {\displaystyle \alpha >(p-1)/2} {\displaystyle \alpha >(p-1)/2} shape parameter

β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} scale parameter
Support X R n × p {\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}} {\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}}
PDF

Γ p ( α + n / 2 ) ( 2 π / β ) n p 2 Γ p ( α ) | Ω | n 2 | Σ | p 2 {\displaystyle {\frac {\Gamma _{p}(\alpha +n/2)}{(2\pi /\beta )^{\frac {np}{2}}\Gamma _{p}(\alpha )}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}} {\displaystyle {\frac {\Gamma _{p}(\alpha +n/2)}{(2\pi /\beta )^{\frac {np}{2}}\Gamma _{p}(\alpha )}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}}

× | I n + β 2 Σ 1 ( X M ) Ω 1 ( X M ) T | ( α + n / 2 ) {\displaystyle \times \left|\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-(\alpha +n/2)}} {\displaystyle \times \left|\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-(\alpha +n/2)}}
CDF No analytic expression
Mean M {\displaystyle \mathbf {M} } {\displaystyle \mathbf {M} } if α > p / 2 {\displaystyle \alpha >p/2} {\displaystyle \alpha >p/2}, else undefined
Variance 2 ( Σ Ω ) β ( 2 α p 1 ) {\displaystyle {\frac {2({\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }})}{\beta (2\alpha -p-1)}}} {\displaystyle {\frac {2({\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }})}{\beta (2\alpha -p-1)}}} if α > ( p + 1 ) / 2 {\displaystyle \alpha >(p+1)/2} {\displaystyle \alpha >(p+1)/2}, else undefined
CF see below

An alternative parameterisation of the matrix t-distribution uses two parameters α {\displaystyle \alpha } {\displaystyle \alpha } and β {\displaystyle \beta } {\displaystyle \beta } in place of ν {\displaystyle \nu } {\displaystyle \nu }.[3]

This formulation reduces to the standard matrix t-distribution with β = 2 , α = ν + p 1 2 . {\displaystyle \beta =2,\alpha ={\frac {\nu +p-1}{2}}.} {\displaystyle \beta =2,\alpha ={\frac {\nu +p-1}{2}}.}

This formulation of the matrix t-distribution can be derived as the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse multivariate gamma distribution placed over either of its covariance matrices.

Properties

[edit ]

If X T n , p ( α , β , M , Σ , Ω ) {\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} {\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} then[2] [3]

X T T p , n ( α , β , M T , Ω , Σ ) . {\displaystyle \mathbf {X} ^{\rm {T}}\sim {\rm {T}}_{p,n}(\alpha ,\beta ,\mathbf {M} ^{\rm {T}},{\boldsymbol {\Omega }},{\boldsymbol {\Sigma }}).} {\displaystyle \mathbf {X} ^{\rm {T}}\sim {\rm {T}}_{p,n}(\alpha ,\beta ,\mathbf {M} ^{\rm {T}},{\boldsymbol {\Omega }},{\boldsymbol {\Sigma }}).}

The property above comes from Sylvester's determinant theorem:

det ( I n + β 2 Σ 1 ( X M ) Ω 1 ( X M ) T ) = {\displaystyle \det \left(\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right)=} {\displaystyle \det \left(\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right)=}
det ( I p + β 2 Ω 1 ( X T M T ) Σ 1 ( X T M T ) T ) . {\displaystyle \det \left(\mathbf {I} _{p}+{\frac {\beta }{2}}{\boldsymbol {\Omega }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}}){\boldsymbol {\Sigma }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}})^{\rm {T}}\right).} {\displaystyle \det \left(\mathbf {I} _{p}+{\frac {\beta }{2}}{\boldsymbol {\Omega }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}}){\boldsymbol {\Sigma }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}})^{\rm {T}}\right).}

If X T n , p ( α , β , M , Σ , Ω ) {\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} {\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} and A ( n × n ) {\displaystyle \mathbf {A} (n\times n)} {\displaystyle \mathbf {A} (n\times n)} and B ( p × p ) {\displaystyle \mathbf {B} (p\times p)} {\displaystyle \mathbf {B} (p\times p)} are nonsingular matrices then[2] [3]

A X B T n , p ( α , β , A M B , A Σ A T , B T Ω B ) . {\displaystyle \mathbf {AXB} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {AMB} ,\mathbf {A} {\boldsymbol {\Sigma }}\mathbf {A} ^{\rm {T}},\mathbf {B} ^{\rm {T}}{\boldsymbol {\Omega }}\mathbf {B} ).} {\displaystyle \mathbf {AXB} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {AMB} ,\mathbf {A} {\boldsymbol {\Sigma }}\mathbf {A} ^{\rm {T}},\mathbf {B} ^{\rm {T}}{\boldsymbol {\Omega }}\mathbf {B} ).}

The characteristic function is[3]

ϕ T ( Z ) = exp ( t r ( i Z M ) ) | Ω | α Γ p ( α ) ( 2 β ) α p | Z Σ Z | α B α ( 1 2 β Z Σ Z Ω ) , {\displaystyle \phi _{T}(\mathbf {Z} )={\frac {\exp({\rm {tr}}(i\mathbf {Z} '\mathbf {M} ))|{\boldsymbol {\Omega }}|^{\alpha }}{\Gamma _{p}(\alpha )(2\beta )^{\alpha p}}}|\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} |^{\alpha }B_{\alpha }\left({\frac {1}{2\beta }}\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} {\boldsymbol {\Omega }}\right),} {\displaystyle \phi _{T}(\mathbf {Z} )={\frac {\exp({\rm {tr}}(i\mathbf {Z} '\mathbf {M} ))|{\boldsymbol {\Omega }}|^{\alpha }}{\Gamma _{p}(\alpha )(2\beta )^{\alpha p}}}|\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} |^{\alpha }B_{\alpha }\left({\frac {1}{2\beta }}\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} {\boldsymbol {\Omega }}\right),}

where

B δ ( W Z ) = | W | δ S > 0 exp ( t r ( S W S 1 Z ) ) | S | δ 1 2 ( p + 1 ) d S , {\displaystyle B_{\delta }(\mathbf {WZ} )=|\mathbf {W} |^{-\delta }\int _{\mathbf {S} >0}\exp \left({\rm {tr}}(-\mathbf {SW} -\mathbf {S^{-1}Z} )\right)|\mathbf {S} |^{-\delta -{\frac {1}{2}}(p+1)}d\mathbf {S} ,} {\displaystyle B_{\delta }(\mathbf {WZ} )=|\mathbf {W} |^{-\delta }\int _{\mathbf {S} >0}\exp \left({\rm {tr}}(-\mathbf {SW} -\mathbf {S^{-1}Z} )\right)|\mathbf {S} |^{-\delta -{\frac {1}{2}}(p+1)}d\mathbf {S} ,}

and where B δ {\displaystyle B_{\delta }} {\displaystyle B_{\delta }} is the type-two Bessel function of Herz[clarification needed ] of a matrix argument.

See also

[edit ]

Notes

[edit ]
  1. ^ a b Zhu, Shenghuo and Kai Yu and Yihong Gong (2007). "Predictive Matrix-Variate t Models." In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721–1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with the matrix normal distribution article.
  2. ^ a b c d e Gupta, Arjun K and Nagar, Daya K (1999). Matrix variate distributions. CRC Press. pp. Chapter 4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ a b c d e Iranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.
[edit ]


Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /