Jump to content
Wikipedia The Free Encyclopedia

Hyper-Erlang distribution

From Wikipedia, the free encyclopedia
Continuous probability distribution
Diagram showing queueing system equivalent of a hyper-Erlang distribution

In probability theory, a hyper-Erlang distribution is a continuous probability distribution which takes a particular Erlang distribution Ei with probability pi. A hyper-Erlang distributed random variable X has a probability density function given by

A ( x ) = i = 1 n p i E l i ( x ) {\displaystyle A(x)=\sum _{i=1}^{n}p_{i}E_{l_{i}}(x)} {\displaystyle A(x)=\sum _{i=1}^{n}p_{i}E_{l_{i}}(x)}

where each pi > 0 with the pi summing to 1 and each of the Eli being an Erlang distribution with li stages each of which has parameter λi.[1] [2] [3]

See also

[edit ]

References

[edit ]
  1. ^ Bocharov, P. P.; D'Apice, C.; Pechinkin, A. V. (2003). "2. Defining parameters of queueing systems". Queueing Theory. doi:10.1515/9783110936025.61. ISBN 9783110936025.
  2. ^ Yuguang Fang; Chlamtac, I. (1999). "Teletraffic analysis and mobility modeling of PCS networks". IEEE Transactions on Communications . 47 (7): 1062. doi:10.1109/26.774856 .
  3. ^ Fang, Y. (2001). "Hyper-Erlang Distribution Model and its Application in Wireless Mobile Networks". Wireless Networks. 7 (3). Kluwer Academic Publishers: 211–219. doi:10.1023/A:1016617904269.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /