Generalized inverse Gaussian distribution
Probability density function Probability density plots of GIG distributions | |||
Parameters | a > 0, b > 0, p real | ||
---|---|---|---|
Support | x > 0 | ||
{\displaystyle f(x)={\frac {(a/b)^{p/2}}{2K_{p}({\sqrt {ab}})}}x^{(p-1)}e^{-(ax+b/x)/2}} | |||
Mean |
{\displaystyle \operatorname {E} [x]={\frac {{\sqrt {b}}\ K_{p+1}({\sqrt {ab}})}{{\sqrt {a}}\ K_{p}({\sqrt {ab}})}}} {\displaystyle \operatorname {E} [x^{-1}]={\frac {{\sqrt {a}}\ K_{p+1}({\sqrt {ab}})}{{\sqrt {b}}\ K_{p}({\sqrt {ab}})}}-{\frac {2p}{b}}} {\displaystyle \operatorname {E} [\ln x]=\ln {\frac {\sqrt {b}}{\sqrt {a}}}+{\frac {\partial }{\partial p}}\ln K_{p}({\sqrt {ab}})} | ||
Mode | {\displaystyle {\frac {(p-1)+{\sqrt {(p-1)^{2}+ab}}}{a}}} | ||
Variance | {\displaystyle \left({\frac {b}{a}}\right)\left[{\frac {K_{p+2}({\sqrt {ab}})}{K_{p}({\sqrt {ab}})}}-\left({\frac {K_{p+1}({\sqrt {ab}})}{K_{p}({\sqrt {ab}})}}\right)^{2}\right]} | ||
MGF | {\displaystyle \left({\frac {a}{a-2t}}\right)^{\frac {p}{2}}{\frac {K_{p}({\sqrt {b(a-2t)}})}{K_{p}({\sqrt {ab}})}}} | ||
CF | {\displaystyle \left({\frac {a}{a-2it}}\right)^{\frac {p}{2}}{\frac {K_{p}({\sqrt {b(a-2it)}})}{K_{p}({\sqrt {ab}})}}} |
In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is a three-parameter family of continuous probability distributions with probability density function
- {\displaystyle f(x)={\frac {(a/b)^{p/2}}{2K_{p}({\sqrt {ab}})}}x^{(p-1)}e^{-(ax+b/x)/2},\qquad x>0,}
where Kp is a modified Bessel function of the second kind, a > 0, b > 0 and p a real parameter. It is used extensively in geostatistics, statistical linguistics, finance, etc. This distribution was first proposed by Étienne Halphen.[1] [2] [3] It was rediscovered and popularised by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture notes.[4]
Properties
[edit ]Alternative parametrization
[edit ]By setting {\displaystyle \theta ={\sqrt {ab}}} and {\displaystyle \eta ={\sqrt {b/a}}}, we can alternatively express the GIG distribution as
- {\displaystyle f(x)={\frac {1}{2\eta K_{p}(\theta )}}\left({\frac {x}{\eta }}\right)^{p-1}e^{-\theta (x/\eta +\eta /x)/2},}
where {\displaystyle \theta } is the concentration parameter while {\displaystyle \eta } is the scaling parameter.
Summation
[edit ]Barndorff-Nielsen and Halgreen proved that the GIG distribution is infinitely divisible.[5]
Entropy
[edit ]The entropy of the generalized inverse Gaussian distribution is given as[citation needed ]
- {\displaystyle {\begin{aligned}H={\frac {1}{2}}\log \left({\frac {b}{a}}\right)&{}+\log \left(2K_{p}\left({\sqrt {ab}}\right)\right)-(p-1){\frac {\left[{\frac {d}{d\nu }}K_{\nu }\left({\sqrt {ab}}\right)\right]_{\nu =p}}{K_{p}\left({\sqrt {ab}}\right)}}\\&{}+{\frac {\sqrt {ab}}{2K_{p}\left({\sqrt {ab}}\right)}}\left(K_{p+1}\left({\sqrt {ab}}\right)+K_{p-1}\left({\sqrt {ab}}\right)\right)\end{aligned}}}
where {\displaystyle \left[{\frac {d}{d\nu }}K_{\nu }\left({\sqrt {ab}}\right)\right]_{\nu =p}} is a derivative of the modified Bessel function of the second kind with respect to the order {\displaystyle \nu } evaluated at {\displaystyle \nu =p}
Characteristic Function
[edit ]The characteristic of a random variable {\displaystyle X\sim GIG(p,a,b)} is given as(for a derivation of the characteristic function, see supplementary materials of [6] )
- {\displaystyle E(e^{itX})=\left({\frac {a}{a-2it}}\right)^{\frac {p}{2}}{\frac {K_{p}\left({\sqrt {(a-2it)b}}\right)}{K_{p}\left({\sqrt {ab}}\right)}}}
for {\displaystyle t\in \mathbb {R} } where {\displaystyle i} denotes the imaginary number.
Related distributions
[edit ]Special cases
[edit ]The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively.[7] Specifically, an inverse Gaussian distribution of the form
- {\displaystyle f(x;\mu ,\lambda )=\left[{\frac {\lambda }{2\pi x^{3}}}\right]^{1/2}\exp {\left({\frac {-\lambda (x-\mu )^{2}}{2\mu ^{2}x}}\right)}}
is a GIG with {\displaystyle a=\lambda /\mu ^{2}}, {\displaystyle b=\lambda }, and {\displaystyle p=-1/2}. A Gamma distribution of the form
- {\displaystyle g(x;\alpha ,\beta )=\beta ^{\alpha }{\frac {1}{\Gamma (\alpha )}}x^{\alpha -1}e^{-\beta x}}
is a GIG with {\displaystyle a=2\beta }, {\displaystyle b=0}, and {\displaystyle p=\alpha }.
Other special cases include the inverse-gamma distribution, for a = 0.[7]
Conjugate prior for Gaussian
[edit ]The GIG distribution is conjugate to the normal distribution when serving as the mixing distribution in a normal variance-mean mixture.[8] [9] Let the prior distribution for some hidden variable, say {\displaystyle z}, be GIG:
- {\displaystyle P(z\mid a,b,p)=\operatorname {GIG} (z\mid a,b,p)}
and let there be {\displaystyle T} observed data points, {\displaystyle X=x_{1},\ldots ,x_{T}}, with normal likelihood function, conditioned on {\displaystyle z:}
- {\displaystyle P(X\mid z,\alpha ,\beta )=\prod _{i=1}^{T}N(x_{i}\mid \alpha +\beta z,z)}
where {\displaystyle N(x\mid \mu ,v)} is the normal distribution, with mean {\displaystyle \mu } and variance {\displaystyle v}. Then the posterior for {\displaystyle z}, given the data is also GIG:
- {\displaystyle P(z\mid X,a,b,p,\alpha ,\beta )={\text{GIG}}\left(z\mid a+T\beta ^{2},b+S,p-{\frac {T}{2}}\right)}
where {\displaystyle \textstyle S=\sum _{i=1}^{T}(x_{i}-\alpha )^{2}}.[note 1]
Sichel distribution
[edit ]The Sichel distribution results when the GIG is used as the mixing distribution for the Poisson parameter {\displaystyle \lambda }.[10] [11]
Notes
[edit ]- ^ Due to the conjugacy, these details can be derived without solving integrals, by noting that
- {\displaystyle P(z\mid X,a,b,p,\alpha ,\beta )\propto P(z\mid a,b,p)P(X\mid z,\alpha ,\beta )}.
References
[edit ]- ^ Seshadri, V. (1997). "Halphen's laws". In Kotz, S.; Read, C. B.; Banks, D. L. (eds.). Encyclopedia of Statistical Sciences, Update Volume 1. New York: Wiley. pp. 302–306.
- ^ Perreault, L.; Bobée, B.; Rasmussen, P. F. (1999). "Halphen Distribution System. I: Mathematical and Statistical Properties". Journal of Hydrologic Engineering. 4 (3): 189. doi:10.1061/(ASCE)1084-0699(1999)4:3(189).
- ^ Étienne Halphen was the grandson of the mathematician Georges Henri Halphen.
- ^ Jørgensen, Bent (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics. Vol. 9. New York–Berlin: Springer-Verlag. ISBN 0-387-90665-7. MR 0648107.
- ^ Barndorff-Nielsen, O.; Halgreen, Christian (1977). "Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 38: 309–311. doi:10.1007/BF00533162.
- ^ Pal, Subhadip; Gaskins, Jeremy (23 May 2022). "Modified Pólya-Gamma data augmentation for Bayesian analysis of directional data". Journal of Statistical Computation and Simulation. 92 (16): 3430–3451. doi:10.1080/00949655.2022.2067853. ISSN 0094-9655. S2CID 249022546.
- ^ a b Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York: John Wiley & Sons, pp. 284–285, ISBN 978-0-471-58495-7, MR 1299979
- ^ Karlis, Dimitris (2002). "An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution". Statistics & Probability Letters. 57 (1): 43–52. doi:10.1016/S0167-7152(02)00040-8.
- ^ Barndorf-Nielsen, O. E. (1997). "Normal Inverse Gaussian Distributions and stochastic volatility modelling". Scand. J. Statist. 24 (1): 1–13. doi:10.1111/1467-9469.00045.
- ^ Sichel, Herbert S. (1975). "On a distribution law for word frequencies". Journal of the American Statistical Association. 70 (351a): 542–547. doi:10.1080/01621459.1975.10482469.
- ^ Stein, Gillian Z.; Zucchini, Walter; Juritz, June M. (1987). "Parameter estimation for the Sichel distribution and its multivariate extension". Journal of the American Statistical Association. 82 (399): 938–944. doi:10.1080/01621459.1987.10478520.
See also
[edit ]