Lomax distribution
Probability density function PDF of the Lomax distribution | |||
Cumulative distribution function Lomax distribution CDF plot | |||
Parameters | |||
---|---|---|---|
Support | {\displaystyle x\geq 0} | ||
{\displaystyle {\alpha \over \lambda }\left(1+{\frac {x}{\lambda }}\right)^{-(\alpha +1)}} | |||
CDF | {\displaystyle 1-\left(1+{\frac {x}{\lambda }}\right)^{-\alpha }} | ||
Quantile | {\displaystyle \lambda \left((1-p)^{-1/\alpha }-1\right)} | ||
Mean | {\displaystyle {\frac {\lambda }{\alpha -1}}{\text{ for }}\alpha >1}; undefined otherwise | ||
Median | {\displaystyle \lambda \left({\sqrt[{\alpha }]{2}}-1\right)} | ||
Mode | 0 | ||
Variance | {\displaystyle {\begin{cases}{\frac {\lambda ^{2}\alpha }{(\alpha -1)^{2}(\alpha -2)}}&\alpha >2\\\infty &1<\alpha \leq 2\\{\text{undefined}}&{\text{otherwise}}\end{cases}}} | ||
Skewness | {\displaystyle {\frac {2(1+\alpha )}{\alpha -3}},円{\sqrt {\frac {\alpha -2}{\alpha }}}{\text{ for }}\alpha >3,円} | ||
Excess kurtosis | {\displaystyle {\frac {6(\alpha ^{3}+\alpha ^{2}-6\alpha -2)}{\alpha (\alpha -3)(\alpha -4)}}{\text{ for }}\alpha >4,円} | ||
Entropy | {\displaystyle 1+{\frac {1}{\alpha }}-\log {\frac {\alpha }{\beta }}} | ||
MGF | {\displaystyle \alpha e^{-\lambda t}(-\lambda t)^{\alpha }\Gamma (-\alpha ,-\lambda t),円} | ||
CF | {\displaystyle \alpha e^{-i\lambda t}(-i\lambda t)^{\alpha }\Gamma (-\alpha ,-i\lambda t),円} |
The Lomax distribution, conditionally also called the Pareto Type II distribution , is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling.[1] [2] [3] It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.[4]
Characterization
[edit ]Probability density function
[edit ]The probability density function (pdf) for the Lomax distribution is given by
- {\displaystyle p(x)={\frac {\alpha }{\lambda }}\left(1+{\frac {x}{\lambda }}\right)^{-(\alpha +1)},\qquad x\geq 0,}
with shape parameter {\displaystyle \alpha >0} and scale parameter {\displaystyle \lambda >0}. The density can be rewritten in such a way that more clearly shows the relation to the Pareto Type I distribution. That is:
- {\displaystyle p(x)={\frac {\alpha \lambda ^{\alpha }}{(x+\lambda )^{\alpha +1}}}.}
Non-central moments
[edit ]The {\displaystyle \nu }th non-central moment {\displaystyle E\left[X^{\nu }\right]} exists only if the shape parameter {\displaystyle \alpha } strictly exceeds {\displaystyle \nu }, when the moment has the value
- {\displaystyle E\left(X^{\nu }\right)={\frac {\lambda ^{\nu }\Gamma (\alpha -\nu )\Gamma (1+\nu )}{\Gamma (\alpha )}}.}
Related distributions
[edit ]Relation to the Pareto distribution
[edit ]The Lomax distribution is a Pareto Type I distribution shifted so that its support begins at zero. Specifically:
- {\displaystyle {\text{If }}Y\sim \operatorname {Pareto} (x_{m}=\lambda ,\alpha ),{\text{ then }}Y-x_{m}\sim \operatorname {Lomax} (\alpha ,\lambda ).}
The Lomax distribution is a Pareto Type II distribution with xm = λ and μ = 0:[5]
- {\displaystyle {\text{If }}X\sim \operatorname {Lomax} (\alpha ,\lambda ){\text{ then }}X\sim {\text{P(II)}}\left(x_{m}=\lambda ,\alpha ,\mu =0\right).}
Relation to the generalized Pareto distribution
[edit ]The Lomax distribution is a special case of the generalized Pareto distribution. Specifically:
- {\displaystyle \mu =0,~\xi ={1 \over \alpha },~\sigma ={\lambda \over \alpha }.}
Relation to the beta prime distribution
[edit ]The Lomax distribution with scale parameter λ = 1 is a special case of the beta prime distribution. If X has a Lomax distribution, then {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )}.
Relation to the F distribution
[edit ]The Lomax distribution with shape parameter α = 1 and scale parameter λ = 1 has density {\displaystyle f(x)={\frac {1}{(1+x)^{2}}}}, the same distribution as an F(2,2) distribution. This is the distribution of the ratio of two independent and identically distributed random variables with exponential distributions.
Relation to the q-exponential distribution
[edit ]The Lomax distribution is a special case of the q-exponential distribution. The q-exponential extends this distribution to support on a bounded interval. The Lomax parameters are given by:
- {\displaystyle \alpha ={{2-q} \over {q-1}},~\lambda ={1 \over \lambda _{q}(q-1)}.}
Relation to the logistic distribution
[edit ]The logarithm of a Lomax(shape = 1.0, scale = λ)-distributed variable follows a logistic distribution with location log(λ) and scale 1.0.
Gamma-exponential (scale-) mixture connection
[edit ]The Lomax distribution arises as a mixture of exponential distributions where the mixing distribution of the rate is a gamma distribution. If λ | k,θ ~ Gamma(shape = k, scale = θ) and X | λ ~ Exponential(rate = λ) then the marginal distribution of X | k,θ is Lomax(shape = k, scale = 1/θ). Since the rate parameter may equivalently be reparameterized to a scale parameter, the Lomax distribution constitutes a scale mixture of exponentials (with the exponential scale parameter following an inverse-gamma distribution).
See also
[edit ]- Power law
- Compound probability distribution
- Hyperexponential distribution (finite mixture of exponentials)
- Normal-exponential-gamma distribution (a normal scale mixture with Lomax mixing distribution)
References
[edit ]- ^ Lomax, K. S. (1954) "Business Failures; Another example of the analysis of failure data". Journal of the American Statistical Association , 49, 847–852. JSTOR 2281544
- ^ Johnson, N. L.; Kotz, S.; Balakrishnan, N. (1994). "20 Pareto distributions". Continuous univariate distributions. Vol. 1 (2nd ed.). New York: Wiley. p. 573.
- ^ J. Chen, J., Addie, R. G., Zukerman. M., Neame, T. D. (2015) "Performance Evaluation of a Queue Fed by a Poisson Lomax Burst Process", IEEE Communications Letters , 19, 3, 367–370.
- ^ Van Hauwermeiren M and Vose D (2009). A Compendium of Distributions [ebook]. Vose Software, Ghent, Belgium. Available at www.vosesoftware.com.
- ^ Kleiber, Christian; Kotz, Samuel (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley Series in Probability and Statistics, vol. 470, John Wiley & Sons, p. 60, ISBN 9780471457169 .