Jump to content
Wikipedia The Free Encyclopedia

Lomax distribution

From Wikipedia, the free encyclopedia
Heavy-tail probability distribution
Lomax
Probability density function
PDF of the Lomax distribution
Cumulative distribution function
Lomax distribution CDF plot
Parameters
  • α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} shape (real)
  • λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0} scale (real)
Support x 0 {\displaystyle x\geq 0} {\displaystyle x\geq 0}
PDF α λ ( 1 + x λ ) ( α + 1 ) {\displaystyle {\alpha \over \lambda }\left(1+{\frac {x}{\lambda }}\right)^{-(\alpha +1)}} {\displaystyle {\alpha \over \lambda }\left(1+{\frac {x}{\lambda }}\right)^{-(\alpha +1)}}
CDF 1 ( 1 + x λ ) α {\displaystyle 1-\left(1+{\frac {x}{\lambda }}\right)^{-\alpha }} {\displaystyle 1-\left(1+{\frac {x}{\lambda }}\right)^{-\alpha }}
Quantile λ ( ( 1 p ) 1 / α 1 ) {\displaystyle \lambda \left((1-p)^{-1/\alpha }-1\right)} {\displaystyle \lambda \left((1-p)^{-1/\alpha }-1\right)}
Mean λ α 1  for  α > 1 {\displaystyle {\frac {\lambda }{\alpha -1}}{\text{ for }}\alpha >1} {\displaystyle {\frac {\lambda }{\alpha -1}}{\text{ for }}\alpha >1}; undefined otherwise
Median λ ( 2 α 1 ) {\displaystyle \lambda \left({\sqrt[{\alpha }]{2}}-1\right)} {\displaystyle \lambda \left({\sqrt[{\alpha }]{2}}-1\right)}
Mode 0
Variance { λ 2 α ( α 1 ) 2 ( α 2 ) α > 2 1 < α 2 undefined otherwise {\displaystyle {\begin{cases}{\frac {\lambda ^{2}\alpha }{(\alpha -1)^{2}(\alpha -2)}}&\alpha >2\\\infty &1<\alpha \leq 2\\{\text{undefined}}&{\text{otherwise}}\end{cases}}} {\displaystyle {\begin{cases}{\frac {\lambda ^{2}\alpha }{(\alpha -1)^{2}(\alpha -2)}}&\alpha >2\\\infty &1<\alpha \leq 2\\{\text{undefined}}&{\text{otherwise}}\end{cases}}}
Skewness 2 ( 1 + α ) α 3 α 2 α  for  α > 3 {\displaystyle {\frac {2(1+\alpha )}{\alpha -3}},円{\sqrt {\frac {\alpha -2}{\alpha }}}{\text{ for }}\alpha >3,円} {\displaystyle {\frac {2(1+\alpha )}{\alpha -3}},円{\sqrt {\frac {\alpha -2}{\alpha }}}{\text{ for }}\alpha >3,円}
Excess kurtosis 6 ( α 3 + α 2 6 α 2 ) α ( α 3 ) ( α 4 )  for  α > 4 {\displaystyle {\frac {6(\alpha ^{3}+\alpha ^{2}-6\alpha -2)}{\alpha (\alpha -3)(\alpha -4)}}{\text{ for }}\alpha >4,円} {\displaystyle {\frac {6(\alpha ^{3}+\alpha ^{2}-6\alpha -2)}{\alpha (\alpha -3)(\alpha -4)}}{\text{ for }}\alpha >4,円}
Entropy 1 + 1 α log α β {\displaystyle 1+{\frac {1}{\alpha }}-\log {\frac {\alpha }{\beta }}} {\displaystyle 1+{\frac {1}{\alpha }}-\log {\frac {\alpha }{\beta }}}
MGF α e λ t ( λ t ) α Γ ( α , λ t ) {\displaystyle \alpha e^{-\lambda t}(-\lambda t)^{\alpha }\Gamma (-\alpha ,-\lambda t),円} {\displaystyle \alpha e^{-\lambda t}(-\lambda t)^{\alpha }\Gamma (-\alpha ,-\lambda t),円}
CF α e i λ t ( i λ t ) α Γ ( α , i λ t ) {\displaystyle \alpha e^{-i\lambda t}(-i\lambda t)^{\alpha }\Gamma (-\alpha ,-i\lambda t),円} {\displaystyle \alpha e^{-i\lambda t}(-i\lambda t)^{\alpha }\Gamma (-\alpha ,-i\lambda t),円}

The Lomax distribution, conditionally also called the Pareto Type II distribution , is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling.[1] [2] [3] It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero.[4]

Characterization

[edit ]

Probability density function

[edit ]

The probability density function (pdf) for the Lomax distribution is given by

p ( x ) = α λ ( 1 + x λ ) ( α + 1 ) , x 0 , {\displaystyle p(x)={\frac {\alpha }{\lambda }}\left(1+{\frac {x}{\lambda }}\right)^{-(\alpha +1)},\qquad x\geq 0,} {\displaystyle p(x)={\frac {\alpha }{\lambda }}\left(1+{\frac {x}{\lambda }}\right)^{-(\alpha +1)},\qquad x\geq 0,}

with shape parameter α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} and scale parameter λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0}. The density can be rewritten in such a way that more clearly shows the relation to the Pareto Type I distribution. That is:

p ( x ) = α λ α ( x + λ ) α + 1 . {\displaystyle p(x)={\frac {\alpha \lambda ^{\alpha }}{(x+\lambda )^{\alpha +1}}}.} {\displaystyle p(x)={\frac {\alpha \lambda ^{\alpha }}{(x+\lambda )^{\alpha +1}}}.}

Non-central moments

[edit ]

The ν {\displaystyle \nu } {\displaystyle \nu }th non-central moment E [ X ν ] {\displaystyle E\left[X^{\nu }\right]} {\displaystyle E\left[X^{\nu }\right]} exists only if the shape parameter α {\displaystyle \alpha } {\displaystyle \alpha } strictly exceeds ν {\displaystyle \nu } {\displaystyle \nu }, when the moment has the value

E ( X ν ) = λ ν Γ ( α ν ) Γ ( 1 + ν ) Γ ( α ) . {\displaystyle E\left(X^{\nu }\right)={\frac {\lambda ^{\nu }\Gamma (\alpha -\nu )\Gamma (1+\nu )}{\Gamma (\alpha )}}.} {\displaystyle E\left(X^{\nu }\right)={\frac {\lambda ^{\nu }\Gamma (\alpha -\nu )\Gamma (1+\nu )}{\Gamma (\alpha )}}.}
[edit ]

Relation to the Pareto distribution

[edit ]

The Lomax distribution is a Pareto Type I distribution shifted so that its support begins at zero. Specifically:

If  Y Pareto ( x m = λ , α ) ,  then  Y x m Lomax ( α , λ ) . {\displaystyle {\text{If }}Y\sim \operatorname {Pareto} (x_{m}=\lambda ,\alpha ),{\text{ then }}Y-x_{m}\sim \operatorname {Lomax} (\alpha ,\lambda ).} {\displaystyle {\text{If }}Y\sim \operatorname {Pareto} (x_{m}=\lambda ,\alpha ),{\text{ then }}Y-x_{m}\sim \operatorname {Lomax} (\alpha ,\lambda ).}

The Lomax distribution is a Pareto Type II distribution with xm = λ and μ = 0:[5]

If  X Lomax ( α , λ )  then  X P(II) ( x m = λ , α , μ = 0 ) . {\displaystyle {\text{If }}X\sim \operatorname {Lomax} (\alpha ,\lambda ){\text{ then }}X\sim {\text{P(II)}}\left(x_{m}=\lambda ,\alpha ,\mu =0\right).} {\displaystyle {\text{If }}X\sim \operatorname {Lomax} (\alpha ,\lambda ){\text{ then }}X\sim {\text{P(II)}}\left(x_{m}=\lambda ,\alpha ,\mu =0\right).}

Relation to the generalized Pareto distribution

[edit ]

The Lomax distribution is a special case of the generalized Pareto distribution. Specifically:

μ = 0 ,   ξ = 1 α ,   σ = λ α . {\displaystyle \mu =0,~\xi ={1 \over \alpha },~\sigma ={\lambda \over \alpha }.} {\displaystyle \mu =0,~\xi ={1 \over \alpha },~\sigma ={\lambda \over \alpha }.}

Relation to the beta prime distribution

[edit ]

The Lomax distribution with scale parameter λ = 1 is a special case of the beta prime distribution. If X has a Lomax distribution, then X λ β ( 1 , α ) {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )} {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )}.

Relation to the F distribution

[edit ]

The Lomax distribution with shape parameter α = 1 and scale parameter λ = 1 has density f ( x ) = 1 ( 1 + x ) 2 {\displaystyle f(x)={\frac {1}{(1+x)^{2}}}} {\displaystyle f(x)={\frac {1}{(1+x)^{2}}}}, the same distribution as an F(2,2) distribution. This is the distribution of the ratio of two independent and identically distributed random variables with exponential distributions.

Relation to the q-exponential distribution

[edit ]

The Lomax distribution is a special case of the q-exponential distribution. The q-exponential extends this distribution to support on a bounded interval. The Lomax parameters are given by:

α = 2 q q 1 ,   λ = 1 λ q ( q 1 ) . {\displaystyle \alpha ={{2-q} \over {q-1}},~\lambda ={1 \over \lambda _{q}(q-1)}.} {\displaystyle \alpha ={{2-q} \over {q-1}},~\lambda ={1 \over \lambda _{q}(q-1)}.}

Relation to the logistic distribution

[edit ]

The logarithm of a Lomax(shape = 1.0, scale = λ)-distributed variable follows a logistic distribution with location log(λ) and scale 1.0.

Gamma-exponential (scale-) mixture connection

[edit ]

The Lomax distribution arises as a mixture of exponential distributions where the mixing distribution of the rate is a gamma distribution. If λ | k,θ ~ Gamma(shape = k, scale = θ) and X | λ ~ Exponential(rate = λ) then the marginal distribution of X | k,θ is Lomax(shape = k, scale = 1/θ). Since the rate parameter may equivalently be reparameterized to a scale parameter, the Lomax distribution constitutes a scale mixture of exponentials (with the exponential scale parameter following an inverse-gamma distribution).

See also

[edit ]

References

[edit ]
  1. ^ Lomax, K. S. (1954) "Business Failures; Another example of the analysis of failure data". Journal of the American Statistical Association , 49, 847–852. JSTOR 2281544
  2. ^ Johnson, N. L.; Kotz, S.; Balakrishnan, N. (1994). "20 Pareto distributions". Continuous univariate distributions. Vol. 1 (2nd ed.). New York: Wiley. p. 573.
  3. ^ J. Chen, J., Addie, R. G., Zukerman. M., Neame, T. D. (2015) "Performance Evaluation of a Queue Fed by a Poisson Lomax Burst Process", IEEE Communications Letters , 19, 3, 367–370.
  4. ^ Van Hauwermeiren M and Vose D (2009). A Compendium of Distributions [ebook]. Vose Software, Ghent, Belgium. Available at www.vosesoftware.com.
  5. ^ Kleiber, Christian; Kotz, Samuel (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley Series in Probability and Statistics, vol. 470, John Wiley & Sons, p. 60, ISBN 9780471457169 .
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /