Beta prime distribution
Probability density function | |||
Cumulative distribution function | |||
Parameters |
{\displaystyle \alpha >0} shape (real) {\displaystyle \beta >0} shape (real) | ||
---|---|---|---|
Support | {\displaystyle x\in [0,\infty )\!} | ||
{\displaystyle f(x)={\frac {x^{\alpha -1}(1+x)^{-\alpha -\beta }}{\mathrm {B} (\alpha ,\beta )}}\!} | |||
CDF | {\displaystyle I_{{\frac {x}{1+x}}(\alpha ,\beta )}} where {\displaystyle I_{x}(\alpha ,\beta )} is the regularized incomplete beta function | ||
Mean | {\displaystyle {\frac {\alpha }{\beta -1}}} if {\displaystyle \beta >1} | ||
Mode | {\displaystyle {\frac {\alpha -1}{\beta +1}}{\text{ if }}\alpha \geq 1{\text{, 0 otherwise}}\!} | ||
Variance | {\displaystyle {\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}} if {\displaystyle \beta >2} | ||
Skewness | {\displaystyle {\frac {2(2\alpha +\beta -1)}{\beta -3}}{\sqrt {\frac {\beta -2}{\alpha (\alpha +\beta -1)}}}} if {\displaystyle \beta >3} | ||
Excess kurtosis | {\displaystyle 6{\frac {\alpha (\alpha +\beta -1)(5\beta -11)+(\beta -1)^{2}(\beta -2)}{\alpha (\alpha +\beta -1)(\beta -3)(\beta -4)}}} if {\displaystyle \beta >4} | ||
Entropy | {\displaystyle {\begin{aligned}&\log \left(\mathrm {B} (\alpha ,\beta )\right)+(\alpha -1)(\psi (\beta )-\psi (\alpha ))\\+&(\alpha +\beta )\left(\psi (1-\alpha -\beta )-\psi (1-\beta )+{\frac {\pi \sin(\alpha \pi )}{\sin(\beta \pi )\sin((\alpha +\beta )\pi ))}}\right)\end{aligned}}} where {\displaystyle \psi } is the digamma function. | ||
MGF | Does not exist | ||
CF | {\displaystyle {\frac {e^{-it}\Gamma (\alpha +\beta )}{\Gamma (\beta )}}G_{1,2}^{,2,0円}\!\left(\left.{\begin{matrix}\alpha +\beta \\\beta ,0\end{matrix}}\;\right|,円-it\right)} |
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind[1] ) is an absolutely continuous probability distribution. If {\displaystyle p\in [0,1]} has a beta distribution, then the odds {\displaystyle {\frac {p}{1-p}}} has a beta prime distribution.
Definitions
[edit ]Beta prime distribution is defined for {\displaystyle x>0} with two parameters α and β, having the probability density function:
- {\displaystyle f(x)={\frac {x^{\alpha -1}(1+x)^{-\alpha -\beta }}{\mathrm {B} (\alpha ,\beta )}}}
where B is the Beta function.
The cumulative distribution function is
- {\displaystyle F(x;\alpha ,\beta )=I_{\frac {x}{1+x}}\left(\alpha ,\beta \right),}
where I is the regularized incomplete beta function.
While the related beta distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed as a probability, the beta prime distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed in odds. The distribution is a Pearson type VI distribution.[1]
The mode of a variate X distributed as {\displaystyle \beta '(\alpha ,\beta )} is {\displaystyle {\hat {X}}={\frac {\alpha -1}{\beta +1}}}. Its mean is {\displaystyle {\frac {\alpha }{\beta -1}}} if {\displaystyle \beta >1} (if {\displaystyle \beta \leq 1} the mean is infinite, in other words it has no well defined mean) and its variance is {\displaystyle {\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}} if {\displaystyle \beta >2}.
For {\displaystyle -\alpha <k<\beta }, the k-th moment {\displaystyle E[X^{k}]} is given by
- {\displaystyle E[X^{k}]={\frac {\mathrm {B} (\alpha +k,\beta -k)}{\mathrm {B} (\alpha ,\beta )}}.}
For {\displaystyle k\in \mathbb {N} } with {\displaystyle k<\beta ,} this simplifies to
- {\displaystyle E[X^{k}]=\prod _{i=1}^{k}{\frac {\alpha +i-1}{\beta -i}}.}
The cdf can also be written as
- {\displaystyle {\frac {x^{\alpha }\cdot {}_{2}F_{1}(\alpha ,\alpha +\beta ,\alpha +1,-x)}{\alpha \cdot \mathrm {B} (\alpha ,\beta )}}}
where {\displaystyle {}_{2}F_{1}} is the Gauss's hypergeometric function 2F1 .
Alternative parameterization
[edit ]The beta prime distribution may also be reparameterized in terms of its mean μ > 0 and precision ν > 0 parameters ([2] p. 36).
Consider the parameterization μ = α/(β − 1) and ν = β − 2, i.e., α = μ(1 + ν) and β = 2 + ν. Under this parameterization E[Y] = μ and Var[Y] = μ(1 + μ)/ν.
Generalization
[edit ]Two more parameters can be added to form the generalized beta prime distribution {\displaystyle \beta '(\alpha ,\beta ,p,q)}:
having the probability density function:
- {\displaystyle f(x;\alpha ,\beta ,p,q)={\frac {p\left({\frac {x}{q}}\right)^{\alpha p-1}\left(1+\left({\frac {x}{q}}\right)^{p}\right)^{-\alpha -\beta }}{q\mathrm {B} (\alpha ,\beta )}}}
with mean
- {\displaystyle {\frac {q\Gamma \left(\alpha +{\tfrac {1}{p}}\right)\Gamma (\beta -{\tfrac {1}{p}})}{\Gamma (\alpha )\Gamma (\beta )}}\quad {\text{if }}\beta p>1}
and mode
- {\displaystyle q\left({\frac {\alpha p-1}{\beta p+1}}\right)^{\tfrac {1}{p}}\quad {\text{if }}\alpha p\geq 1}
Note that if p = q = 1 then the generalized beta prime distribution reduces to the standard beta prime distribution.
This generalization can be obtained via the following invertible transformation. If {\displaystyle y\sim \beta '(\alpha ,\beta )} and {\displaystyle x=qy^{1/p}} for {\displaystyle q,p>0}, then {\displaystyle x\sim \beta '(\alpha ,\beta ,p,q)}.
Compound gamma distribution
[edit ]The compound gamma distribution[3] is the generalization of the beta prime when the scale parameter, q is added, but where p = 1. It is so named because it is formed by compounding two gamma distributions:
- {\displaystyle \beta '(x;\alpha ,\beta ,1,q)=\int _{0}^{\infty }G(x;\alpha ,r)G(r;\beta ,q)\;dr}
where {\displaystyle G(x;a,b)} is the gamma pdf with shape {\displaystyle a} and inverse scale {\displaystyle b}.
The mode, mean and variance of the compound gamma can be obtained by multiplying the mode and mean in the above infobox by q and the variance by q2.
Another way to express the compounding is if {\displaystyle r\sim G(\beta ,q)} and {\displaystyle x\mid r\sim G(\alpha ,r)}, then {\displaystyle x\sim \beta '(\alpha ,\beta ,1,q)}. This gives one way to generate random variates with compound gamma, or beta prime distributions. Another is via the ratio of independent gamma variates, as shown below.
Properties
[edit ]- If {\displaystyle X\sim \beta '(\alpha ,\beta )} then {\displaystyle {\tfrac {1}{X}}\sim \beta '(\beta ,\alpha )}.
- If {\displaystyle Y\sim \beta '(\alpha ,\beta )}, and {\displaystyle X=qY^{1/p}}, then {\displaystyle X\sim \beta '(\alpha ,\beta ,p,q)}.
- If {\displaystyle X\sim \beta '(\alpha ,\beta ,p,q)} then {\displaystyle kX\sim \beta '(\alpha ,\beta ,p,kq)}.
- {\displaystyle \beta '(\alpha ,\beta ,1,1)=\beta '(\alpha ,\beta )}
Related distributions
[edit ]- If {\displaystyle X\sim {\textrm {Beta}}(\alpha ,\beta )}, then {\displaystyle {\frac {X}{1-X}}\sim \beta '(\alpha ,\beta )}. This property can be used to generate beta prime distributed variates.
- If {\displaystyle X\sim \beta '(\alpha ,\beta )}, then {\displaystyle {\frac {X}{1+X}}\sim {\textrm {Beta}}(\alpha ,\beta )}. This is a corollary from the property above.
- If {\displaystyle X\sim F(2\alpha ,2\beta )} has an F-distribution, then {\displaystyle {\tfrac {\alpha }{\beta }}X\sim \beta '(\alpha ,\beta )}, or equivalently, {\displaystyle X\sim \beta '(\alpha ,\beta ,1,{\tfrac {\beta }{\alpha }})}.
- For gamma distribution parametrization I:
- If {\displaystyle X_{k}\sim \Gamma (\alpha _{k},\theta _{k})} are independent, then {\displaystyle {\tfrac {X_{1}}{X_{2}}}\sim \beta '(\alpha _{1},\alpha _{2},1,{\tfrac {\theta _{1}}{\theta _{2}}})}. Note {\displaystyle \theta _{1},\theta _{2},{\tfrac {\theta _{1}}{\theta _{2}}}} are all scale parameters for their respective distributions.
- For gamma distribution parametrization II:
- If {\displaystyle X_{k}\sim \Gamma (\alpha _{k},\beta _{k})} are independent, then {\displaystyle {\tfrac {X_{1}}{X_{2}}}\sim \beta '(\alpha _{1},\alpha _{2},1,{\tfrac {\beta _{2}}{\beta _{1}}})}. The {\displaystyle \beta _{k}} are rate parameters, while {\displaystyle {\tfrac {\beta _{2}}{\beta _{1}}}} is a scale parameter.
- If {\displaystyle \beta _{2}\sim \Gamma (\alpha _{1},\beta _{1})} and {\displaystyle X_{2}\mid \beta _{2}\sim \Gamma (\alpha _{2},\beta _{2})}, then {\displaystyle X_{2}\sim \beta '(\alpha _{2},\alpha _{1},1,\beta _{1})}. The {\displaystyle \beta _{k}} are rate parameters for the gamma distributions, but {\displaystyle \beta _{1}} is the scale parameter for the beta prime.
- {\displaystyle \beta '(p,1,a,b)={\textrm {Dagum}}(p,a,b)} the Dagum distribution
- {\displaystyle \beta '(1,p,a,b)={\textrm {SinghMaddala}}(p,a,b)} the Singh–Maddala distribution.
- {\displaystyle \beta '(1,1,\gamma ,\sigma )={\textrm {LL}}(\gamma ,\sigma )} the log logistic distribution.
- The beta prime distribution is a special case of the type 6 Pearson distribution.
- If X has a Pareto distribution with minimum {\displaystyle x_{m}} and shape parameter {\displaystyle \alpha }, then {\displaystyle {\dfrac {X}{x_{m}}}-1\sim \beta ^{\prime }(1,\alpha )}.
- If X has a Lomax distribution, also known as a Pareto Type II distribution, with shape parameter {\displaystyle \alpha } and scale parameter {\displaystyle \lambda }, then {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )}.
- If X has a standard Pareto Type IV distribution with shape parameter {\displaystyle \alpha } and inequality parameter {\displaystyle \gamma }, then {\displaystyle X^{\frac {1}{\gamma }}\sim \beta ^{\prime }(1,\alpha )}, or equivalently, {\displaystyle X\sim \beta ^{\prime }(1,\alpha ,{\tfrac {1}{\gamma }},1)}.
- The inverted Dirichlet distribution is a generalization of the beta prime distribution.
- If {\displaystyle X\sim \beta '(\alpha ,\beta )}, then {\displaystyle \ln X} has a generalized logistic distribution. More generally, if {\displaystyle X\sim \beta '(\alpha ,\beta ,p,q)}, then {\displaystyle \ln X} has a scaled and shifted generalized logistic distribution.
- If {\displaystyle X\sim \beta '\left({\frac {1}{2}},{\frac {1}{2}}\right)}, then {\displaystyle \pm {\sqrt {X}}} follows a Cauchy distribution, which is equivalent to a student-t distribution with the degrees of freedom of 1.
Notes
[edit ]- ^ a b Johnson et al (1995), p 248
- ^ Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021). "A new regression model for positive random variables with skewed and long tail". Metron. 79: 33–55. doi:10.1007/s40300-021-00203-y. S2CID 233534544.
- ^ Dubey, Satya D. (December 1970). "Compound gamma, beta and F distributions". Metrika. 16: 27–31. doi:10.1007/BF02613934. S2CID 123366328.
References
[edit ]- Johnson, N.L., Kotz, S., Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2 (2nd Edition), Wiley. ISBN 0-471-58494-0
- Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021), "A new regression model for positive random variables with skewed and long tail", Metron, 79: 33–55, doi:10.1007/s40300-021-00203-y, S2CID 233534544