Jump to content
Wikipedia The Free Encyclopedia

Arcsine distribution

From Wikipedia, the free encyclopedia
This is the current revision of this page, as edited by Citation bot (talk | contribs) at 05:21, 12 January 2025 (Altered pages. Add: publisher, bibcode, authors 1-1. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:Talgalili/sandbox | #UCB_webform_linked 69/2730). The present address (URL) is a permanent link to this version.Revision as of 05:21, 12 January 2025 by Citation bot (talk | contribs) (Altered pages. Add: publisher, bibcode, authors 1-1. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Linked from User:Talgalili/sandbox | #UCB_webform_linked 69/2730)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Type of probability distribution
Arcsine
Probability density function
Probability density function for the arcsine distribution
Cumulative distribution function
Cumulative distribution function for the arcsine distribution
Parameters none
Support x ( 0 , 1 ) {\displaystyle x\in (0,1)} {\displaystyle x\in (0,1)}
PDF f ( x ) = 1 π x ( 1 x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}} {\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}}
CDF F ( x ) = 2 π arcsin ( x ) {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)} {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)}
Mean 1 2 {\displaystyle {\frac {1}{2}}} {\displaystyle {\frac {1}{2}}}
Median 1 2 {\displaystyle {\frac {1}{2}}} {\displaystyle {\frac {1}{2}}}
Mode x { 0 , 1 } {\displaystyle x\in \{0,1\}} {\displaystyle x\in \{0,1\}}
Variance 1 8 {\displaystyle {\tfrac {1}{8}}} {\displaystyle {\tfrac {1}{8}}}
Skewness 0 {\displaystyle 0} {\displaystyle 0}
Excess kurtosis 3 2 {\displaystyle -{\tfrac {3}{2}}} {\displaystyle -{\tfrac {3}{2}}}
Entropy ln π 4 {\displaystyle \ln {\tfrac {\pi }{4}}} {\displaystyle \ln {\tfrac {\pi }{4}}}
MGF 1 + k = 1 ( r = 0 k 1 2 r + 1 2 r + 2 ) t k k ! {\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {2r+1}{2r+2}}\right){\frac {t^{k}}{k!}}} {\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {2r+1}{2r+2}}\right){\frac {t^{k}}{k!}}}
CF e i t 2 J 0 ( t 2 ) {\displaystyle e^{i{\frac {t}{2}}}J_{0}({\frac {t}{2}})} {\displaystyle e^{i{\frac {t}{2}}}J_{0}({\frac {t}{2}})}

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:

F ( x ) = 2 π arcsin ( x ) = arcsin ( 2 x 1 ) π + 1 2 {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)={\frac {\arcsin(2x-1)}{\pi }}+{\frac {1}{2}}} {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)={\frac {\arcsin(2x-1)}{\pi }}+{\frac {1}{2}}}

for 0 ≤ x ≤ 1, and whose probability density function is

f ( x ) = 1 π x ( 1 x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}} {\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}}

on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if X {\displaystyle X} {\displaystyle X} is an arcsine-distributed random variable, then X B e t a ( 1 2 , 1 2 ) {\displaystyle X\sim {\rm {Beta}}{\bigl (}{\tfrac {1}{2}},{\tfrac {1}{2}}{\bigr )}} {\displaystyle X\sim {\rm {Beta}}{\bigl (}{\tfrac {1}{2}},{\tfrac {1}{2}}{\bigr )}}. By extension, the arcsine distribution is a special case of the Pearson type I distribution.

The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial.[1] [2] The arcsine probability density is a distribution that appears in several random-walk fundamental theorems. In a fair coin toss random walk, the probability for the time of the last visit to the origin is distributed as an (U-shaped) arcsine distribution.[3] [4] In a two-player fair-coin-toss game, a player is said to be in the lead if the random walk (that started at the origin) is above the origin. The most probable number of times that a given player will be in the lead, in a game of length 2N, is not N. On the contrary, N is the least likely number of times that the player will be in the lead. The most likely number of times in the lead is 0 or 2N (following the arcsine distribution).

Generalization

[edit ]
Arcsine – bounded support
Parameters < a < b < {\displaystyle -\infty <a<b<\infty ,円} {\displaystyle -\infty <a<b<\infty ,円}
Support x ( a , b ) {\displaystyle x\in (a,b)} {\displaystyle x\in (a,b)}
PDF f ( x ) = 1 π ( x a ) ( b x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}} {\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}}
CDF F ( x ) = 2 π arcsin ( x a b a ) {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)} {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)}
Mean a + b 2 {\displaystyle {\frac {a+b}{2}}} {\displaystyle {\frac {a+b}{2}}}
Median a + b 2 {\displaystyle {\frac {a+b}{2}}} {\displaystyle {\frac {a+b}{2}}}
Mode x a , b {\displaystyle x\in {a,b}} {\displaystyle x\in {a,b}}
Variance 1 8 ( b a ) 2 {\displaystyle {\tfrac {1}{8}}(b-a)^{2}} {\displaystyle {\tfrac {1}{8}}(b-a)^{2}}
Skewness 0 {\displaystyle 0} {\displaystyle 0}
Excess kurtosis 3 2 {\displaystyle -{\tfrac {3}{2}}} {\displaystyle -{\tfrac {3}{2}}}
CF e i t b + a 2 J 0 ( b a 2 t ) {\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)} {\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)}

Arbitrary bounded support

[edit ]

The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation

F ( x ) = 2 π arcsin ( x a b a ) {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)} {\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)}

for a ≤ x ≤ b, and whose probability density function is

f ( x ) = 1 π ( x a ) ( b x ) {\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}} {\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}}

on (ab).

Shape factor

[edit ]

The generalized standard arcsine distribution on (0,1) with probability density function

f ( x ; α ) = sin π α π x α ( 1 x ) α 1 {\displaystyle f(x;\alpha )={\frac {\sin \pi \alpha }{\pi }}x^{-\alpha }(1-x)^{\alpha -1}} {\displaystyle f(x;\alpha )={\frac {\sin \pi \alpha }{\pi }}x^{-\alpha }(1-x)^{\alpha -1}}

is also a special case of the beta distribution with parameters B e t a ( 1 α , α ) {\displaystyle {\rm {Beta}}(1-\alpha ,\alpha )} {\displaystyle {\rm {Beta}}(1-\alpha ,\alpha )}.

Note that when α = 1 2 {\displaystyle \alpha ={\tfrac {1}{2}}} {\displaystyle \alpha ={\tfrac {1}{2}}} the general arcsine distribution reduces to the standard distribution listed above.

Properties

[edit ]
  • Arcsine distribution is closed under translation and scaling by a positive factor
    • If X A r c s i n e ( a , b )   then  k X + c A r c s i n e ( a k + c , b k + c ) {\displaystyle X\sim {\rm {Arcsine}}(a,b)\ {\text{then }}kX+c\sim {\rm {Arcsine}}(ak+c,bk+c)} {\displaystyle X\sim {\rm {Arcsine}}(a,b)\ {\text{then }}kX+c\sim {\rm {Arcsine}}(ak+c,bk+c)}
  • The square of an arcsine distribution over (-1, 1) has arcsine distribution over (0, 1)
    • If X A r c s i n e ( 1 , 1 )   then  X 2 A r c s i n e ( 0 , 1 ) {\displaystyle X\sim {\rm {Arcsine}}(-1,1)\ {\text{then }}X^{2}\sim {\rm {Arcsine}}(0,1)} {\displaystyle X\sim {\rm {Arcsine}}(-1,1)\ {\text{then }}X^{2}\sim {\rm {Arcsine}}(0,1)}
  • The coordinates of points uniformly selected on a circle of radius r {\displaystyle r} {\displaystyle r} centered at the origin (0, 0), have an A r c s i n e ( r , r ) {\displaystyle {\rm {Arcsine}}(-r,r)} {\displaystyle {\rm {Arcsine}}(-r,r)} distribution
    • For example, if we select a point uniformly on the circumference, U U n i f o r m ( 0 , 2 π r ) {\displaystyle U\sim {\rm {Uniform}}(0,2\pi r)} {\displaystyle U\sim {\rm {Uniform}}(0,2\pi r)}, we have that the point's x coordinate distribution is r cos ( U ) A r c s i n e ( r , r ) {\displaystyle r\cdot \cos(U)\sim {\rm {Arcsine}}(-r,r)} {\displaystyle r\cdot \cos(U)\sim {\rm {Arcsine}}(-r,r)}, and its y coordinate distribution is r sin ( U ) A r c s i n e ( r , r ) {\textstyle r\cdot \sin(U)\sim {\rm {Arcsine}}(-r,r)} {\textstyle r\cdot \sin(U)\sim {\rm {Arcsine}}(-r,r)}

Characteristic function

[edit ]

The characteristic function of the generalized arcsine distribution is a zero order Bessel function of the first kind, multiplied by a complex exponential, given by e i t b + a 2 J 0 ( b a 2 t ) {\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)} {\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)}. For the special case of b = a {\displaystyle b=-a} {\displaystyle b=-a}, the characteristic function takes the form of J 0 ( b t ) {\displaystyle J_{0}(bt)} {\displaystyle J_{0}(bt)}.

[edit ]
  • If U and V are i.i.d uniform (−π,π) random variables, then sin ( U ) {\displaystyle \sin(U)} {\displaystyle \sin(U)}, sin ( 2 U ) {\displaystyle \sin(2U)} {\displaystyle \sin(2U)}, cos ( 2 U ) {\displaystyle -\cos(2U)} {\displaystyle -\cos(2U)}, sin ( U + V ) {\displaystyle \sin(U+V)} {\displaystyle \sin(U+V)} and sin ( U V ) {\displaystyle \sin(U-V)} {\displaystyle \sin(U-V)} all have an A r c s i n e ( 1 , 1 ) {\displaystyle {\rm {Arcsine}}(-1,1)} {\displaystyle {\rm {Arcsine}}(-1,1)} distribution.
  • If X {\displaystyle X} {\displaystyle X} is the generalized arcsine distribution with shape parameter α {\displaystyle \alpha } {\displaystyle \alpha } supported on the finite interval [a,b] then X a b a B e t a ( 1 α , α )   {\displaystyle {\frac {X-a}{b-a}}\sim {\rm {Beta}}(1-\alpha ,\alpha )\ } {\displaystyle {\frac {X-a}{b-a}}\sim {\rm {Beta}}(1-\alpha ,\alpha )\ }
  • If X ~ Cauchy(0, 1) then 1 1 + X 2 {\displaystyle {\tfrac {1}{1+X^{2}}}} {\displaystyle {\tfrac {1}{1+X^{2}}}} has a standard arcsine distribution

References

[edit ]
  1. ^ Overturf, Drew; et al. (2017). Investigation of beamforming patterns from volumetrically distributed phased arrays. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822. doi:10.1109/MILCOM.2017.8170756. ISBN 978-1-5386-0595-0.
  2. ^ Buchanan, K.; et al. (2020). "Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions". IEEE Transactions on Antennas and Propagation. 68 (7): 5353–5364. Bibcode:2020ITAP...68.5353B. doi:10.1109/TAP.2020.2978887.
  3. ^ Feller, William (1971). An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley. ISBN 978-0471257097.
  4. ^ Feller, William (1968). An Introduction to Probability Theory and Its Applications. Vol. 1 (3rd ed.). Wiley. ISBN 978-0471257080.

Further reading

[edit ]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /