Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
SVM: Maximum margin separating hyperplane#
Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel.
plot separating hyperplane# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt fromsklearnimport svm fromsklearn.datasetsimport make_blobs fromsklearn.inspectionimport DecisionBoundaryDisplay # we create 40 separable points X, y = make_blobs (n_samples=40, centers=2, random_state=6) # fit the model, don't regularize for illustration purposes clf = svm.SVC (kernel="linear", C=1000) clf.fit(X, y) plt.scatter (X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired) # plot the decision function ax = plt.gca () DecisionBoundaryDisplay.from_estimator ( clf, X, plot_method="contour", colors="k", levels=[-1, 0, 1], alpha=0.5, linestyles=["--", "-", "--"], ax=ax, ) # plot support vectors ax.scatter( clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidth=1, facecolors="none", edgecolors="k", ) plt.show ()
Total running time of the script: (0 minutes 0.066 seconds)
Related examples
SVM: Separating hyperplane for unbalanced classes
SVM: Separating hyperplane for unbalanced classes
Plot the support vectors in LinearSVC
Plot the support vectors in LinearSVC
SGD: Maximum margin separating hyperplane
SGD: Maximum margin separating hyperplane
SVM with custom kernel