Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Feature agglomeration#
These images show how similar features are merged together using feature agglomeration.
Original data, Agglomerated data, Labels# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp fromsklearnimport cluster, datasets fromsklearn.feature_extraction.imageimport grid_to_graph digits = datasets.load_digits () images = digits.images X = np.reshape (images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration (connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape (X_restored, images.shape) plt.figure (1, figsize=(4, 3.5)) plt.clf () plt.subplots_adjust (left=0.01, right=0.99, bottom=0.01, top=0.91) for i in range(4): plt.subplot (3, 4, i + 1) plt.imshow (images[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest") plt.xticks (()) plt.yticks (()) if i == 1: plt.title ("Original data") plt.subplot (3, 4, 4 + i + 1) plt.imshow (images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest") if i == 1: plt.title ("Agglomerated data") plt.xticks (()) plt.yticks (()) plt.subplot (3, 4, 10) plt.imshow ( np.reshape (agglo.labels_, images[0].shape), interpolation="nearest", cmap=plt.cm.nipy_spectral, ) plt.xticks (()) plt.yticks (()) plt.title ("Labels") plt.show ()
Total running time of the script: (0 minutes 0.138 seconds)
Related examples
Image denoising using kernel PCA
Image denoising using kernel PCA
Recognizing hand-written digits
Recognizing hand-written digits
Online learning of a dictionary of parts of faces
Online learning of a dictionary of parts of faces
Feature agglomeration vs. univariate selection
Feature agglomeration vs. univariate selection