Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification#
This example illustrates how the Ledoit-Wolf and Oracle Approximating Shrinkage (OAS) estimators of covariance can improve classification.
LDA (Linear Discriminant Analysis) vs. LDA with Ledoit Wolf vs. LDA with OAS (1 discriminative feature)# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp fromsklearn.covarianceimport OAS fromsklearn.datasetsimport make_blobs fromsklearn.discriminant_analysisimport LinearDiscriminantAnalysis n_train = 20 # samples for training n_test = 200 # samples for testing n_averages = 50 # how often to repeat classification n_features_max = 75 # maximum number of features step = 4 # step size for the calculation defgenerate_data(n_samples, n_features): """Generate random blob-ish data with noisy features. This returns an array of input data with shape `(n_samples, n_features)` and an array of `n_samples` target labels. Only one feature contains discriminative information, the other features contain only noise. """ X, y = make_blobs (n_samples=n_samples, n_features=1, centers=[[-2], [2]]) # add non-discriminative features if n_features > 1: X = np.hstack ([X, np.random.randn (n_samples, n_features - 1)]) return X, y acc_clf1, acc_clf2, acc_clf3 = [], [], [] n_features_range = range(1, n_features_max + 1, step) for n_features in n_features_range: score_clf1, score_clf2, score_clf3 = 0, 0, 0 for _ in range(n_averages): X, y = generate_data(n_train, n_features) clf1 = LinearDiscriminantAnalysis (solver="lsqr", shrinkage=None).fit(X, y) clf2 = LinearDiscriminantAnalysis (solver="lsqr", shrinkage="auto").fit(X, y) oa = OAS (store_precision=False, assume_centered=False) clf3 = LinearDiscriminantAnalysis (solver="lsqr", covariance_estimator=oa).fit( X, y ) X, y = generate_data(n_test, n_features) score_clf1 += clf1.score(X, y) score_clf2 += clf2.score(X, y) score_clf3 += clf3.score(X, y) acc_clf1.append(score_clf1 / n_averages) acc_clf2.append(score_clf2 / n_averages) acc_clf3.append(score_clf3 / n_averages) features_samples_ratio = np.array (n_features_range) / n_train plt.plot ( features_samples_ratio, acc_clf1, linewidth=2, label="LDA", color="gold", linestyle="solid", ) plt.plot ( features_samples_ratio, acc_clf2, linewidth=2, label="LDA with Ledoit Wolf", color="navy", linestyle="dashed", ) plt.plot ( features_samples_ratio, acc_clf3, linewidth=2, label="LDA with OAS", color="red", linestyle="dotted", ) plt.xlabel ("n_features / n_samples") plt.ylabel ("Classification accuracy") plt.legend (loc="lower left") plt.ylim ((0.65, 1.0)) plt.suptitle ( "LDA (Linear Discriminant Analysis) vs." "\n" "LDA with Ledoit Wolf vs." "\n" "LDA with OAS (1 discriminative feature)" ) plt.show ()
Total running time of the script: (0 minutes 8.304 seconds)
Related examples
Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood
Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood
Ledoit-Wolf vs OAS estimation
Linear and Quadratic Discriminant Analysis with covariance ellipsoid
Linear and Quadratic Discriminant Analysis with covariance ellipsoid
Comparison of LDA and PCA 2D projection of Iris dataset
Comparison of LDA and PCA 2D projection of Iris dataset