Note

Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder

Prediction Latency#

This is an example showing the prediction latency of various scikit-learn estimators.

The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode.

The plots represent the distribution of the prediction latency as a boxplot.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
importgc
importtime
fromcollectionsimport defaultdict
importmatplotlib.pyplotasplt
importnumpyasnp
fromsklearn.datasetsimport make_regression
fromsklearn.ensembleimport RandomForestRegressor
fromsklearn.linear_modelimport Ridge , SGDRegressor
fromsklearn.model_selectionimport train_test_split
fromsklearn.preprocessingimport StandardScaler
fromsklearn.svmimport SVR
fromsklearn.utilsimport shuffle
def_not_in_sphinx():
 # Hack to detect whether we are running by the sphinx builder
 return "__file__" in globals()

Benchmark and plot helper functions#

defatomic_benchmark_estimator(estimator, X_test, verbose=False):
"""Measure runtime prediction of each instance."""
 n_instances = X_test.shape[0]
 runtimes = np.zeros (n_instances, dtype=float)
 for i in range(n_instances):
 instance = X_test[[i], :]
 start = time.time ()
 estimator.predict(instance)
 runtimes[i] = time.time () - start
 if verbose:
 print(
 "atomic_benchmark runtimes:",
 min(runtimes),
 np.percentile (runtimes, 50),
 max(runtimes),
 )
 return runtimes
defbulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
"""Measure runtime prediction of the whole input."""
 n_instances = X_test.shape[0]
 runtimes = np.zeros (n_bulk_repeats, dtype=float)
 for i in range(n_bulk_repeats):
 start = time.time ()
 estimator.predict(X_test)
 runtimes[i] = time.time () - start
 runtimes = np.array (list(map(lambda x: x / float(n_instances), runtimes)))
 if verbose:
 print(
 "bulk_benchmark runtimes:",
 min(runtimes),
 np.percentile (runtimes, 50),
 max(runtimes),
 )
 return runtimes
defbenchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
"""
 Measure runtimes of prediction in both atomic and bulk mode.
 Parameters
 ----------
 estimator : already trained estimator supporting `predict()`
 X_test : test input
 n_bulk_repeats : how many times to repeat when evaluating bulk mode
 Returns
 -------
 atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the
 runtimes in seconds.
 """
 atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
 bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose)
 return atomic_runtimes, bulk_runtimes
defgenerate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
"""Generate a regression dataset with the given parameters."""
 if verbose:
 print("generating dataset...")
 X, y, coef = make_regression (
 n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True
 )
 random_seed = 13
 X_train, X_test, y_train, y_test = train_test_split (
 X, y, train_size=n_train, test_size=n_test, random_state=random_seed
 )
 X_train, y_train = shuffle (X_train, y_train, random_state=random_seed)
 X_scaler = StandardScaler ()
 X_train = X_scaler.fit_transform(X_train)
 X_test = X_scaler.transform(X_test)
 y_scaler = StandardScaler ()
 y_train = y_scaler.fit_transform(y_train[:, None])[:, 0]
 y_test = y_scaler.transform(y_test[:, None])[:, 0]
 gc.collect ()
 if verbose:
 print("ok")
 return X_train, y_train, X_test, y_test
defboxplot_runtimes(runtimes, pred_type, configuration):
"""
 Plot a new `Figure` with boxplots of prediction runtimes.
 Parameters
 ----------
 runtimes : list of `np.array` of latencies in micro-seconds
 cls_names : list of estimator class names that generated the runtimes
 pred_type : 'bulk' or 'atomic'
 """
 fig, ax1 = plt.subplots (figsize=(10, 6))
 bp = plt.boxplot (
 runtimes,
 )
 cls_infos = [
 "%s\n(%d%s)"
 % (
 estimator_conf["name"],
 estimator_conf["complexity_computer"](estimator_conf["instance"]),
 estimator_conf["complexity_label"],
 )
 for estimator_conf in configuration["estimators"]
 ]
 plt.setp (ax1, xticklabels=cls_infos)
 plt.setp (bp["boxes"], color="black")
 plt.setp (bp["whiskers"], color="black")
 plt.setp (bp["fliers"], color="red", marker="+")
 ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)
 ax1.set_axisbelow(True)
 ax1.set_title(
 "Prediction Time per Instance - %s, %d feats."
 % (pred_type.capitalize(), configuration["n_features"])
 )
 ax1.set_ylabel("Prediction Time (us)")
 plt.show ()
defbenchmark(configuration):
"""Run the whole benchmark."""
 X_train, y_train, X_test, y_test = generate_dataset(
 configuration["n_train"], configuration["n_test"], configuration["n_features"]
 )
 stats = {}
 for estimator_conf in configuration["estimators"]:
 print("Benchmarking", estimator_conf["instance"])
 estimator_conf["instance"].fit(X_train, y_train)
 gc.collect ()
 a, b = benchmark_estimator(estimator_conf["instance"], X_test)
 stats[estimator_conf["name"]] = {"atomic": a, "bulk": b}
 cls_names = [
 estimator_conf["name"] for estimator_conf in configuration["estimators"]
 ]
 runtimes = [1e6 * stats[clf_name]["atomic"] for clf_name in cls_names]
 boxplot_runtimes(runtimes, "atomic", configuration)
 runtimes = [1e6 * stats[clf_name]["bulk"] for clf_name in cls_names]
 boxplot_runtimes(runtimes, "bulk (%d)" % configuration["n_test"], configuration)
defn_feature_influence(estimators, n_train, n_test, n_features, percentile):
"""
 Estimate influence of the number of features on prediction time.
 Parameters
 ----------
 estimators : dict of (name (str), estimator) to benchmark
 n_train : nber of training instances (int)
 n_test : nber of testing instances (int)
 n_features : list of feature-space dimensionality to test (int)
 percentile : percentile at which to measure the speed (int [0-100])
 Returns:
 --------
 percentiles : dict(estimator_name,
 dict(n_features, percentile_perf_in_us))
 """
 percentiles = defaultdict (defaultdict )
 for n in n_features:
 print("benchmarking with %d features" % n)
 X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
 for cls_name, estimator in estimators.items():
 estimator.fit(X_train, y_train)
 gc.collect ()
 runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
 percentiles[cls_name][n] = 1e6 * np.percentile (runtimes, percentile)
 return percentiles
defplot_n_features_influence(percentiles, percentile):
 fig, ax1 = plt.subplots (figsize=(10, 6))
 colors = ["r", "g", "b"]
 for i, cls_name in enumerate(percentiles.keys()):
 x = np.array (sorted(percentiles[cls_name].keys()))
 y = np.array ([percentiles[cls_name][n] for n in x])
 plt.plot (
 x,
 y,
 color=colors[i],
 )
 ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)
 ax1.set_axisbelow(True)
 ax1.set_title("Evolution of Prediction Time with #Features")
 ax1.set_xlabel("#Features")
 ax1.set_ylabel("Prediction Time at %d%%-ile (us)" % percentile)
 plt.show ()
defbenchmark_throughputs(configuration, duration_secs=0.1):
"""benchmark throughput for different estimators."""
 X_train, y_train, X_test, y_test = generate_dataset(
 configuration["n_train"], configuration["n_test"], configuration["n_features"]
 )
 throughputs = dict()
 for estimator_config in configuration["estimators"]:
 estimator_config["instance"].fit(X_train, y_train)
 start_time = time.time ()
 n_predictions = 0
 while (time.time () - start_time) < duration_secs:
 estimator_config["instance"].predict(X_test[[0]])
 n_predictions += 1
 throughputs[estimator_config["name"]] = n_predictions / duration_secs
 return throughputs
defplot_benchmark_throughput(throughputs, configuration):
 fig, ax = plt.subplots (figsize=(10, 6))
 colors = ["r", "g", "b"]
 cls_infos = [
 "%s\n(%d%s)"
 % (
 estimator_conf["name"],
 estimator_conf["complexity_computer"](estimator_conf["instance"]),
 estimator_conf["complexity_label"],
 )
 for estimator_conf in configuration["estimators"]
 ]
 cls_values = [
 throughputs[estimator_conf["name"]]
 for estimator_conf in configuration["estimators"]
 ]
 plt.bar (range(len(throughputs)), cls_values, width=0.5, color=colors)
 ax.set_xticks(np.linspace (0.25, len(throughputs) - 0.75, len(throughputs)))
 ax.set_xticklabels(cls_infos, fontsize=10)
 ymax = max(cls_values) * 1.2
 ax.set_ylim((0, ymax))
 ax.set_ylabel("Throughput (predictions/sec)")
 ax.set_title(
 "Prediction Throughput for different estimators (%d features)"
 % configuration["n_features"]
 )
 plt.show ()

Benchmark bulk/atomic prediction speed for various regressors#

configuration = {
 "n_train": int(1e3),
 "n_test": int(1e2),
 "n_features": int(1e2),
 "estimators": [
 {
 "name": "Linear Model",
 "instance": SGDRegressor (
 penalty="elasticnet", alpha=0.01, l1_ratio=0.25, tol=1e-4
 ),
 "complexity_label": "non-zero coefficients",
 "complexity_computer": lambda clf: np.count_nonzero (clf.coef_),
 },
 {
 "name": "RandomForest",
 "instance": RandomForestRegressor (),
 "complexity_label": "estimators",
 "complexity_computer": lambda clf: clf.n_estimators,
 },
 {
 "name": "SVR",
 "instance": SVR (kernel="rbf"),
 "complexity_label": "support vectors",
 "complexity_computer": lambda clf: len(clf.support_vectors_),
 },
 ],
}
benchmark(configuration)
  • Prediction Time per Instance - Atomic, 100 feats.
  • Prediction Time per Instance - Bulk (100), 100 feats.
Benchmarking SGDRegressor(alpha=0.01, l1_ratio=0.25, penalty='elasticnet', tol=0.0001)
Benchmarking RandomForestRegressor()
Benchmarking SVR()

Benchmark n_features influence on prediction speed#

percentile = 90
percentiles = n_feature_influence(
 {"ridge": Ridge ()},
 configuration["n_train"],
 configuration["n_test"],
 [100, 250, 500],
 percentile,
)
plot_n_features_influence(percentiles, percentile)
Evolution of Prediction Time with #Features
benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features

Benchmark throughput#

throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)
Prediction Throughput for different estimators (100 features)

Total running time of the script: (0 minutes 20.023 seconds)

Related examples

SVM-Anova: SVM with univariate feature selection

SVM-Anova: SVM with univariate feature selection

Out-of-core classification of text documents

Out-of-core classification of text documents

Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification

Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification

Model Complexity Influence

Model Complexity Influence

Gallery generated by Sphinx-Gallery