Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Comparing different hierarchical linkage methods on toy datasets#
This example shows characteristics of different linkage methods for hierarchical clustering on datasets that are "interesting" but still in 2D.
The main observations to make are:
single linkage is fast, and can perform well on non-globular data, but it performs poorly in the presence of noise.
average and complete linkage perform well on cleanly separated globular clusters, but have mixed results otherwise.
Ward is the most effective method for noisy data.
While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data.
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importtime importwarnings fromitertoolsimport cycle , islice importmatplotlib.pyplotasplt importnumpyasnp fromsklearnimport cluster, datasets fromsklearn.preprocessingimport StandardScaler
Generate datasets. We choose the size big enough to see the scalability of the algorithms, but not too big to avoid too long running times
n_samples = 1500 noisy_circles = datasets.make_circles ( n_samples=n_samples, factor=0.5, noise=0.05, random_state=170 ) noisy_moons = datasets.make_moons (n_samples=n_samples, noise=0.05, random_state=170) blobs = datasets.make_blobs (n_samples=n_samples, random_state=170) rng = np.random.RandomState (170) no_structure = rng.rand(n_samples, 2), None # Anisotropicly distributed data X, y = datasets.make_blobs (n_samples=n_samples, random_state=170) transformation = [[0.6, -0.6], [-0.4, 0.8]] X_aniso = np.dot (X, transformation) aniso = (X_aniso, y) # blobs with varied variances varied = datasets.make_blobs ( n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=170 )
Run the clustering and plot
# Set up cluster parameters plt.figure (figsize=(9 * 1.3 + 2, 14.5)) plt.subplots_adjust ( left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01 ) plot_num = 1 default_base = {"n_neighbors": 10, "n_clusters": 3} datasets = [ (noisy_circles, {"n_clusters": 2}), (noisy_moons, {"n_clusters": 2}), (varied, {"n_neighbors": 2}), (aniso, {"n_neighbors": 2}), (blobs, {}), (no_structure, {}), ] for i_dataset, (dataset, algo_params) in enumerate(datasets ): # update parameters with dataset-specific values params = default_base.copy() params.update(algo_params) X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler ().fit_transform(X) # ============ # Create cluster objects # ============ ward = cluster.AgglomerativeClustering ( n_clusters=params["n_clusters"], linkage="ward" ) complete = cluster.AgglomerativeClustering ( n_clusters=params["n_clusters"], linkage="complete" ) average = cluster.AgglomerativeClustering ( n_clusters=params["n_clusters"], linkage="average" ) single = cluster.AgglomerativeClustering ( n_clusters=params["n_clusters"], linkage="single" ) clustering_algorithms = ( ("Single Linkage", single), ("Average Linkage", average), ("Complete Linkage", complete), ("Ward Linkage", ward), ) for name, algorithm in clustering_algorithms: t0 = time.time () # catch warnings related to kneighbors_graph with warnings.catch_warnings (): warnings.filterwarnings ( "ignore", message="the number of connected components of the " "connectivity matrix is [0-9]{1,2}" " > 1. Completing it to avoid stopping the tree early.", category=UserWarning, ) algorithm.fit(X) t1 = time.time () if hasattr(algorithm, "labels_"): y_pred = algorithm.labels_.astype(int) else: y_pred = algorithm.predict(X) plt.subplot (len(datasets ), len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title (name, size=18) colors = np.array ( list( islice ( cycle ( [ "#377eb8", "#ff7f00", "#4daf4a", "#f781bf", "#a65628", "#984ea3", "#999999", "#e41a1c", "#dede00", ] ), int(max(y_pred) + 1), ) ) ) plt.scatter (X[:, 0], X[:, 1], s=10, color=colors[y_pred]) plt.xlim (-2.5, 2.5) plt.ylim (-2.5, 2.5) plt.xticks (()) plt.yticks (()) plt.text ( 0.99, 0.01, ("%.2fs" % (t1 - t0)).lstrip("0"), transform=plt.gca ().transAxes, size=15, horizontalalignment="right", ) plot_num += 1 plt.show ()
Total running time of the script: (0 minutes 2.134 seconds)
Related examples
Comparing different clustering algorithms on toy datasets
Agglomerative clustering with and without structure
Various Agglomerative Clustering on a 2D embedding of digits
A demo of structured Ward hierarchical clustering on an image of coins