Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Feature discretization#
A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each feature into a set of bins, here equally distributed in width. The discrete values are then one-hot encoded, and given to a linear classifier. This preprocessing enables a non-linear behavior even though the classifier is linear.
On this example, the first two rows represent linearly non-separable datasets (moons and concentric circles) while the third is approximately linearly separable. On the two linearly non-separable datasets, feature discretization largely increases the performance of linear classifiers. On the linearly separable dataset, feature discretization decreases the performance of linear classifiers. Two non-linear classifiers are also shown for comparison.
This example should be taken with a grain of salt, as the intuition conveyed does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly. Moreover, using feature discretization and one-hot encoding increases the number of features, which easily lead to overfitting when the number of samples is small.
The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set.
Input data, LogisticRegression, LinearSVC, KBinsDiscretizer LogisticRegression, KBinsDiscretizer LinearSVC, GradientBoostingClassifier, SVCdataset 0 --------- LogisticRegression: 0.86 LinearSVC: 0.86 KBinsDiscretizer + LogisticRegression: 0.86 KBinsDiscretizer + LinearSVC: 0.86 GradientBoostingClassifier: 0.90 SVC: 0.94 dataset 1 --------- LogisticRegression: 0.40 LinearSVC: 0.40 KBinsDiscretizer + LogisticRegression: 0.82 KBinsDiscretizer + LinearSVC: 0.82 GradientBoostingClassifier: 0.84 SVC: 0.84 dataset 2 --------- LogisticRegression: 0.98 LinearSVC: 0.96 KBinsDiscretizer + LogisticRegression: 0.94 KBinsDiscretizer + LinearSVC: 0.94 GradientBoostingClassifier: 0.94 SVC: 0.98
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp frommatplotlib.colorsimport ListedColormap fromsklearn.datasetsimport make_circles , make_classification , make_moons fromsklearn.ensembleimport GradientBoostingClassifier fromsklearn.exceptionsimport ConvergenceWarning fromsklearn.linear_modelimport LogisticRegression fromsklearn.model_selectionimport GridSearchCV , train_test_split fromsklearn.pipelineimport make_pipeline fromsklearn.preprocessingimport KBinsDiscretizer , StandardScaler fromsklearn.svmimport SVC , LinearSVC fromsklearn.utils._testingimport ignore_warnings h = 0.02 # step size in the mesh defget_name(estimator): name = estimator.__class__.__name__ if name == "Pipeline": name = [get_name(est[1]) for est in estimator.steps] name = " + ".join(name) return name # list of (estimator, param_grid), where param_grid is used in GridSearchCV # The parameter spaces in this example are limited to a narrow band to reduce # its runtime. In a real use case, a broader search space for the algorithms # should be used. classifiers = [ ( make_pipeline (StandardScaler (), LogisticRegression (random_state=0)), {"logisticregression__C": np.logspace (-1, 1, 3)}, ), ( make_pipeline (StandardScaler (), LinearSVC (random_state=0)), {"linearsvc__C": np.logspace (-1, 1, 3)}, ), ( make_pipeline ( StandardScaler (), KBinsDiscretizer ( encode="onehot", quantile_method="averaged_inverted_cdf", random_state=0 ), LogisticRegression (random_state=0), ), { "kbinsdiscretizer__n_bins": np.arange (5, 8), "logisticregression__C": np.logspace (-1, 1, 3), }, ), ( make_pipeline ( StandardScaler (), KBinsDiscretizer ( encode="onehot", quantile_method="averaged_inverted_cdf", random_state=0 ), LinearSVC (random_state=0), ), { "kbinsdiscretizer__n_bins": np.arange (5, 8), "linearsvc__C": np.logspace (-1, 1, 3), }, ), ( make_pipeline ( StandardScaler (), GradientBoostingClassifier (n_estimators=5, random_state=0) ), {"gradientboostingclassifier__learning_rate": np.logspace (-2, 0, 5)}, ), ( make_pipeline (StandardScaler (), SVC (random_state=0)), {"svc__C": np.logspace (-1, 1, 3)}, ), ] names = [get_name(e).replace("StandardScaler + ", "") for e, _ in classifiers] n_samples = 100 datasets = [ make_moons (n_samples=n_samples, noise=0.2, random_state=0), make_circles (n_samples=n_samples, noise=0.2, factor=0.5, random_state=1), make_classification ( n_samples=n_samples, n_features=2, n_redundant=0, n_informative=2, random_state=2, n_clusters_per_class=1, ), ] fig, axes = plt.subplots ( nrows=len(datasets), ncols=len(classifiers) + 1, figsize=(21, 9) ) cm_piyg = plt.cm.PiYG cm_bright = ListedColormap (["#b30065", "#178000"]) # iterate over datasets for ds_cnt, (X, y) in enumerate(datasets): print(f"\ndataset {ds_cnt}\n---------") # split into training and test part X_train, X_test, y_train, y_test = train_test_split ( X, y, test_size=0.5, random_state=42 ) # create the grid for background colors x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5 y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5 xx, yy = np.meshgrid (np.arange (x_min, x_max, h), np.arange (y_min, y_max, h)) # plot the dataset first ax = axes[ds_cnt, 0] if ds_cnt == 0: ax.set_title("Input data") # plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k") # and testing points ax.scatter( X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k" ) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) # iterate over classifiers for est_idx, (name, (estimator, param_grid)) in enumerate(zip(names, classifiers)): ax = axes[ds_cnt, est_idx + 1] clf = GridSearchCV (estimator=estimator, param_grid=param_grid) with ignore_warnings(category=ConvergenceWarning ): clf.fit(X_train, y_train) score = clf.score(X_test, y_test) print(f"{name}: {score:.2f}") # plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]*[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.column_stack ([xx.ravel(), yy.ravel()])) else: Z = clf.predict_proba(np.column_stack ([xx.ravel(), yy.ravel()]))[:, 1] # put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm_piyg, alpha=0.8) # plot the training points ax.scatter( X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k" ) # and testing points ax.scatter( X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors="k", alpha=0.6, ) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title(name.replace(" + ", "\n")) ax.text( 0.95, 0.06, (f"{score:.2f}").lstrip("0"), size=15, bbox=dict(boxstyle="round", alpha=0.8, facecolor="white"), transform=ax.transAxes, horizontalalignment="right", ) plt.tight_layout () # Add suptitles above the figure plt.subplots_adjust (top=0.90) suptitles = [ "Linear classifiers", "Feature discretization and linear classifiers", "Non-linear classifiers", ] for i, suptitle in zip([1, 3, 5], suptitles): ax = axes[0, i] ax.text( 1.05, 1.25, suptitle, transform=ax.transAxes, horizontalalignment="center", size="x-large", ) plt.show ()
Total running time of the script: (0 minutes 3.543 seconds)
Related examples
Varying regularization in Multi-layer Perceptron
Demonstrating the different strategies of KBinsDiscretizer
Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset