Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Face completion with a multi-output estimators#
This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half.
The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces.
Face completion with multi-output estimators, true faces, Extra trees, K-nn, Linear regression, Ridge# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp fromsklearn.datasetsimport fetch_olivetti_faces fromsklearn.ensembleimport ExtraTreesRegressor fromsklearn.linear_modelimport LinearRegression , RidgeCV fromsklearn.neighborsimport KNeighborsRegressor fromsklearn.utils.validationimport check_random_state # Load the faces datasets data, targets = fetch_olivetti_faces (return_X_y=True) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state (4) face_ids = rng.randint(test.shape[0], size=(n_faces,)) test = test[face_ids, :] n_pixels = data.shape[1] # Upper half of the faces X_train = train[:, : (n_pixels + 1) // 2] # Lower half of the faces y_train = train[:, n_pixels // 2 :] X_test = test[:, : (n_pixels + 1) // 2] y_test = test[:, n_pixels // 2 :] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor ( n_estimators=10, max_features=32, random_state=0 ), "K-nn": KNeighborsRegressor (), "Linear regression": LinearRegression (), "Ridge": RidgeCV (), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure (figsize=(2.0 * n_cols, 2.26 * n_faces)) plt.suptitle ("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack ((X_test[i], y_test[i])) if i: sub = plt.subplot (n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot (n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow( true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest" ) for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack ((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot (n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot (n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow( completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest", ) plt.show ()
Total running time of the script: (0 minutes 1.646 seconds)
Related examples
Online learning of a dictionary of parts of faces
Online learning of a dictionary of parts of faces
Feature agglomeration
Faces dataset decompositions
Faces recognition example using eigenfaces and SVMs
Faces recognition example using eigenfaces and SVMs