Note

Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder

Monotonic Constraints#

This example illustrates the effect of monotonic constraints on a gradient boosting estimator.

We build an artificial dataset where the target value is in general positively correlated with the first feature (with some random and non-random variations), and in general negatively correlated with the second feature.

By imposing a monotonic increase or a monotonic decrease constraint, respectively, on the features during the learning process, the estimator is able to properly follow the general trend instead of being subject to the variations.

This example was inspired by the XGBoost documentation.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
importmatplotlib.pyplotasplt
importnumpyasnp
fromsklearn.ensembleimport HistGradientBoostingRegressor
fromsklearn.inspectionimport PartialDependenceDisplay
rng = np.random.RandomState (0)
n_samples = 1000
f_0 = rng.rand(n_samples)
f_1 = rng.rand(n_samples)
X = np.c_ [f_0, f_1]
noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
# y is positively correlated with f_0, and negatively correlated with f_1
y = 5 * f_0 + np.sin (10 * np.pi * f_0) - 5 * f_1 - np.cos (10 * np.pi * f_1) + noise

Fit a first model on this dataset without any constraints.

gbdt_no_cst = HistGradientBoostingRegressor ()
gbdt_no_cst.fit(X, y)
HistGradientBoostingRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

AltStyle によって変換されたページ (->オリジナル) /



Fit a second model on this dataset with monotonic increase (1) and a monotonic decrease (-1) constraints, respectively.

gbdt_with_monotonic_cst = HistGradientBoostingRegressor (monotonic_cst=[1, -1])
gbdt_with_monotonic_cst.fit(X, y)
HistGradientBoostingRegressor(monotonic_cst=[1, -1])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Let’s display the partial dependence of the predictions on the two features.

fig, ax = plt.subplots ()
disp = PartialDependenceDisplay.from_estimator (
 gbdt_no_cst,
 X,
 features=[0, 1],
 feature_names=(
 "First feature",
 "Second feature",
 ),
 line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"},
 ax=ax,
)
PartialDependenceDisplay.from_estimator (
 gbdt_with_monotonic_cst,
 X,
 features=[0, 1],
 line_kw={"linewidth": 4, "label": "constrained", "color": "tab:orange"},
 ax=disp.axes_,
)
for f_idx in (0, 1):
 disp.axes_[0, f_idx].plot(
 X[:, f_idx], y, "o", alpha=0.3, zorder=-1, color="tab:green"
 )
 disp.axes_[0, f_idx].set_ylim(-6, 6)
plt.legend ()
fig.suptitle("Monotonic constraints effect on partial dependences")
plt.show ()
Monotonic constraints effect on partial dependences

We can see that the predictions of the unconstrained model capture the oscillations of the data while the constrained model follows the general trend and ignores the local variations.

Using feature names to specify monotonic constraints#

Note that if the training data has feature names, it’s possible to specify the monotonic constraints by passing a dictionary:

importpandasaspd
X_df = pd.DataFrame (X, columns=["f_0", "f_1"])
gbdt_with_monotonic_cst_df = HistGradientBoostingRegressor (
 monotonic_cst={"f_0": 1, "f_1": -1}
).fit(X_df, y)
np.allclose (
 gbdt_with_monotonic_cst_df.predict(X_df), gbdt_with_monotonic_cst.predict(X)
)
True

Total running time of the script: (0 minutes 0.902 seconds)

Related examples

Release Highlights for scikit-learn 0.23

Release Highlights for scikit-learn 0.23

Release Highlights for scikit-learn 1.4

Release Highlights for scikit-learn 1.4

Features in Histogram Gradient Boosting Trees

Features in Histogram Gradient Boosting Trees

Advanced Plotting With Partial Dependence

Advanced Plotting With Partial Dependence

Gallery generated by Sphinx-Gallery