Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Gaussian process classification (GPC) on iris dataset#
This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two feature dimensions.
Isotropic RBF, LML: -48.316, Anisotropic RBF, LML: -47.888# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp fromsklearnimport datasets fromsklearn.gaussian_processimport GaussianProcessClassifier fromsklearn.gaussian_process.kernelsimport RBF # import some data to play with iris = datasets.load_iris () X = iris.data[:, :2] # we only take the first two features. y = np.array (iris.target, dtype=int) h = 0.02 # step size in the mesh kernel = 1.0 * RBF ([1.0]) gpc_rbf_isotropic = GaussianProcessClassifier (kernel=kernel).fit(X, y) kernel = 1.0 * RBF ([1.0, 1.0]) gpc_rbf_anisotropic = GaussianProcessClassifier (kernel=kernel).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid (np.arange (x_min, x_max, h), np.arange (y_min, y_max, h)) titles = ["Isotropic RBF", "Anisotropic RBF"] plt.figure (figsize=(10, 5)) for i, clf in enumerate((gpc_rbf_isotropic, gpc_rbf_anisotropic)): # Plot the predicted probabilities. For that, we will assign a color to # each point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot (1, 2, i + 1) Z = clf.predict_proba(np.c_ [xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape((xx.shape[0], xx.shape[1], 3)) plt.imshow (Z, extent=(x_min, x_max, y_min, y_max), origin="lower") # Plot also the training points plt.scatter (X[:, 0], X[:, 1], c=np.array (["r", "g", "b"])[y], edgecolors=(0, 0, 0)) plt.xlabel ("Sepal length") plt.ylabel ("Sepal width") plt.xlim (xx.min(), xx.max()) plt.ylim (yy.min(), yy.max()) plt.xticks (()) plt.yticks (()) plt.title ( "%s, LML: %.3f" % (titles[i], clf.log_marginal_likelihood(clf.kernel_.theta)) ) plt.tight_layout () plt.show ()
Total running time of the script: (0 minutes 2.730 seconds)
Related examples
Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset
Illustration of Gaussian process classification (GPC) on the XOR dataset
Varying regularization in Multi-layer Perceptron
Plot the decision surfaces of ensembles of trees on the iris dataset