Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Gradient Boosting Out-of-Bag estimates#
Out-of-bag (OOB) estimates can be a useful heuristic to estimate
the "optimal" number of boosting iterations.
OOB estimates are almost identical to cross-validation estimates but
they can be computed on-the-fly without the need for repeated model
fitting.
OOB estimates are only available for Stochastic Gradient Boosting
(i.e. subsample < 1.0
), the estimates are derived from the improvement
in loss based on the examples not included in the bootstrap sample
(the so-called out-of-bag examples).
The OOB estimator is a pessimistic estimator of the true
test loss, but remains a fairly good approximation for a small number of trees.
The figure shows the cumulative sum of the negative OOB improvements
as a function of the boosting iteration. As you can see, it tracks the test
loss for the first hundred iterations but then diverges in a
pessimistic way.
The figure also shows the performance of 3-fold cross validation which
usually gives a better estimate of the test loss
but is computationally more demanding.
Accuracy: 0.6860
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp fromscipy.specialimport expit fromsklearnimport ensemble fromsklearn.metricsimport log_loss fromsklearn.model_selectionimport KFold , train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState (13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = expit (np.sin (3 * x1) - 4 * x2 + x3) y = random_state.binomial(1, p, size=n_samples) X = np.c_ [x1, x2, x3] X = X.astype(np.float32 ) X_train, X_test, y_train, y_test = train_test_split (X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = { "n_estimators": 1200, "max_depth": 3, "subsample": 0.5, "learning_rate": 0.01, "min_samples_leaf": 1, "random_state": 3, } clf = ensemble.GradientBoostingClassifier (**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params["n_estimators"] x = np.arange (n_estimators) + 1 defheldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``.""" score = np.zeros ((n_estimators,), dtype=np.float64 ) for i, y_proba in enumerate(clf.staged_predict_proba(X_test)): score[i] = 2 * log_loss (y_test, y_proba[:, 1]) return score defcv_estimate(n_splits=None): cv = KFold (n_splits=n_splits) cv_clf = ensemble.GradientBoostingClassifier (**params) val_scores = np.zeros ((n_estimators,), dtype=np.float64 ) for train, test in cv.split(X_train, y_train): cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_splits return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum (clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin (cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin (test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin (cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # line type for the three curves oob_line = "dashed" test_line = "solid" cv_line = "dashdot" # plot curves and vertical lines for best iterations plt.figure (figsize=(8, 4.8)) plt.plot (x, cumsum, label="OOB loss", color=oob_color, linestyle=oob_line) plt.plot (x, test_score, label="Test loss", color=test_color, linestyle=test_line) plt.plot (x, cv_score, label="CV loss", color=cv_color, linestyle=cv_line) plt.axvline (x=oob_best_iter, color=oob_color, linestyle=oob_line) plt.axvline (x=test_best_iter, color=test_color, linestyle=test_line) plt.axvline (x=cv_best_iter, color=cv_color, linestyle=cv_line) # add three vertical lines to xticks xticks = plt.xticks () xticks_pos = np.array ( xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter] ) xticks_label = np.array (list(map(lambda t: int(t), xticks[0])) + ["OOB", "CV", "Test"]) ind = np.argsort (xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks (xticks_pos, xticks_label, rotation=90) plt.legend (loc="upper center") plt.ylabel ("normalized loss") plt.xlabel ("number of iterations") plt.show ()
Total running time of the script: (0 minutes 10.572 seconds)
Related examples
Gradient Boosting regularization
SGD: Maximum margin separating hyperplane