Note

Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder

OOB Errors for Random Forests#

The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a bootstrap sample of the training observations \(z_i = (x_i, y_i)\). The out-of-bag (OOB) error is the average error for each \(z_i\) calculated using predictions from the trees that do not contain \(z_i\) in their respective bootstrap sample. This allows the RandomForestClassifier to be fit and validated whilst being trained [1].

The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of n_estimators at which the error stabilizes.

plot ensemble oob
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
fromcollectionsimport OrderedDict
importmatplotlib.pyplotasplt
fromsklearn.datasetsimport make_classification
fromsklearn.ensembleimport RandomForestClassifier
RANDOM_STATE = 123
# Generate a binary classification dataset.
X, y = make_classification (
 n_samples=500,
 n_features=25,
 n_clusters_per_class=1,
 n_informative=15,
 random_state=RANDOM_STATE,
)
# NOTE: Setting the `warm_start` construction parameter to `True` disables
# support for parallelized ensembles but is necessary for tracking the OOB
# error trajectory during training.
ensemble_clfs = [
 (
 "RandomForestClassifier, max_features='sqrt'",
 RandomForestClassifier (
 warm_start=True,
 oob_score=True,
 max_features="sqrt",
 random_state=RANDOM_STATE,
 ),
 ),
 (
 "RandomForestClassifier, max_features='log2'",
 RandomForestClassifier (
 warm_start=True,
 max_features="log2",
 oob_score=True,
 random_state=RANDOM_STATE,
 ),
 ),
 (
 "RandomForestClassifier, max_features=None",
 RandomForestClassifier (
 warm_start=True,
 max_features=None,
 oob_score=True,
 random_state=RANDOM_STATE,
 ),
 ),
]
# Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict ((label, []) for label, _ in ensemble_clfs)
# Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 150
for label, clf in ensemble_clfs:
 for i in range(min_estimators, max_estimators + 1, 5):
 clf.set_params(n_estimators=i)
 clf.fit(X, y)
 # Record the OOB error for each `n_estimators=i` setting.
 oob_error = 1 - clf.oob_score_
 error_rate[label].append((i, oob_error))
# Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():
 xs, ys = zip(*clf_err)
 plt.plot (xs, ys, label=label)
plt.xlim (min_estimators, max_estimators)
plt.xlabel ("n_estimators")
plt.ylabel ("OOB error rate")
plt.legend (loc="upper right")
plt.show ()

Total running time of the script: (0 minutes 4.287 seconds)

Related examples

Gradient Boosting Out-of-Bag estimates

Gradient Boosting Out-of-Bag estimates

Feature transformations with ensembles of trees

Feature transformations with ensembles of trees

Release Highlights for scikit-learn 0.22

Release Highlights for scikit-learn 0.22

Plot the decision surfaces of ensembles of trees on the iris dataset

Plot the decision surfaces of ensembles of trees on the iris dataset

Gallery generated by Sphinx-Gallery