Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH.
-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis. Infect Immun. 2008 Oct;76(10):4370-7. Epub 2008 Jun 23.
Calderone RA.
In vitro and
ex vivo assays of virulence in
Candida albicans. Methods Mol Biol. 2009;499:85-93.
Chamilos G, Nobile CJ, Bruno VM, Lewis RE, Mitchell AP, Kontoyiannis DP.
Candida albicans Cas5, a regulator of cell wall integrity, is required for virulence in murine and toll mutant fly models. J Infect Dis. 2009 Jul 1;200(1):152-7.
Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC, Tsai PW, Tung KC, Wang CH, Lan CY, Chuang YJ. Zebrafish as a Model Host for
Candida albicans Infection. Infect Immun. 2010 Mar 22. [Epub ahead of print]
Clancy CJ, Cheng S, Nguyen MH. Animal models of candidiasis. Methods Mol Biol. 2009;499:65-76.
de Repentigny L. Animal models in the analysis of
Candida host-pathogen interactions. Curr Opin Microbiol. 2004 Aug;7(4):324-9.
Du C, Calderone RA. Phagocytosis and killing assays for
Candida species. Methods Mol Biol. 2009;499:17-26.
Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R,
Vecchiarelli A, Brown AJ, d'Enfert C. A multifunctional, synthetic
Gaussia princeps luciferase reporter for live imaging of
Candida albicans infections. Infect Immun. 2009 Nov;77(11):4847-58. Epub 2009 Aug 17.
Ibrahim AS, Magee BB, Sheppard DC, Yang M, Kauffman S, Becker J, Edwards JE Jr, Magee PT. Effects of ploidy and mating type on virulence of
Candida albicans. Infect Immun. 2005 Nov;73(11):7366-74.
Ishibashi H, Hisajima T, Hu W, Yamaguchi H, Nishiyama Y, Abe S. A murine model of esophageal candidiasis with local characteristic symptoms. Microbiol Immunol. 2007;51(5):501-6.
Jayatilake JA, Samaranayake LP. Experimental superficial candidiasis on tissue models. Mycoses. 2010 Apr 6. [Epub ahead of print]
Lockhart SR, Wu W, Radke JB, Zhao R, Soll DR. Increased virulence and competitive advantage of a/alpha over a/a or alpha/alpha offspring conserves the mating system of
Candida albicans. Genetics. 2005 Apr;169(4):1883-90. Epub 2005 Feb 3.
MacCallum DM. Massive induction of innate immune response to
Candida albicans in the kidney in a murine intravenous challenge model. FEMS Yeast Res. 2009 Oct;9(7):1111-22.
Mitra S, Dolan K, Foster TH, Wellington M. Imaging morphogenesis of
Candida albicans during infection in a live animal. J Biomed Opt. 2010 Jan-Feb;15(1):010504.
Mowlds P, Coates C, Renwick J, Kavanagh K. Dose-dependent cellular and humoral responses in
Galleria mellonella larvae following beta-glucan inoculation. Microbes Infect. 2010 Feb;12(2):146-53. Epub 2009 Nov 24.
Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal
Candida infection. FEMS Microbiol Lett. 2008 Jun;283(2):129-39. Epub 2008 Apr 16.
Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E.
Candida albicans hyphal formation and virulence assessed using a
Caenorhabditis elegans infection model. Eukaryot Cell. 2009 Nov;8(11):1750-8. Epub 2009 Aug 7.
Rahman D, Mistry M, Thavaraj S, Challacombe SJ, Naglik JR. Murine model of concurrent oral and vaginal
Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect. 2007 Apr;9(5):615-22. Epub 2007 Jan 27.
Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA. Adaptations of
Candida albicans For Growth In the Mammalian Intestinal Tract. Eukaryot Cell. 2010 Apr 30. [Epub ahead of print]
Rozell B, Ljungdahl PO, Mart地ez P. Host-pathogen interactions and the pathological consequences of acute systemic
Candida albicans infections in mice. Curr Drug Targets. 2006 Apr;7(4):483-94.
Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol. 2008 Dec;46(8):749-72.
Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B. Identifying infection-associated genes of
Candida albicans in the postgenomic era. FEMS Yeast Res. 2009 Aug;9(5):688-700. Epub 2009 Apr 27.
Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR. Heterozygosity of genes on the sex chromosome regulates
Candida albicans virulence. Mol Microbiol. 2007 Jun;64(6):1587-604.
List last updated: 05/14/2010
Back to top
Berman, J. Morphogenesis and cell cycle progression in
Candida
albicans. 2006 Dec;9(6):595-601. Epub 2006 Oct 20.
Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P.
Candida albicans hyphae have a Spitzenkorper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci. 2005 Jul 1;118(Pt 13):2935-47.
Gow NA. Germ tube growth of
Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
Gow NA, Gooday GW. Cytological aspects of dimorphism in
Candida albicans. Crit Rev Microbiol. 1987;15(1):73-8.
Gow NA, Gooday GW. Vacuolation, branch production and linear growth of germ tubes in
Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2195-8.
Gow NA, Gooday GW. A model for the germ tube formation and mycelial growth form of
Candida albicans. Sabouraudia. 1984;22(2):137-44.
Gow NA, Gooday GW. Growth kinetics and morphology of colonies of the filamentous form of
Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2187-94.
Oh KB, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in
Candida albicans. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4664-8. Epub 2001 Mar 27.
Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE. Hsp90 orchestrates temperature-dependent
Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol. 2009 Apr 28;19(8):621-9. Epub 2009 Mar 26.
Sinha I, Wang YM, Philp R, Li CR, Yap WH, Wang Y. Cyclin-dependent kinases control septin phosphorylation in
Candida albicans hyphal development. Dev Cell. 2007 Sep;13(3):421-32.
Veses V, Gow NA. Pseudohypha budding patterns of
Candida albicans. Med Mycol. 2009 May;47(3):268-75.
Veses V, Gow NA. Vacuolar dynamics during the morphogenetic transition in
Candida albicans. FEMS Yeast Res. 2008 Dec;8(8):1339-48.
Veses V, Richards A, Gow NA. Vacuole inheritance regulates cell size and branching frequency of
Candida albicans hyphae. Mol Microbiol. 2009 Jan;71(2):505-19. Epub 2008 Nov 25.
Wang Y. CDKs and the yeast-hyphal decision. Curr Opin Microbiol. 2009 Dec;12(6):644-9.
Whiteway M, Bachewich C. Morphogenesis in
Candida albicans. Annu Rev Microbiol. 2007;61:529-53.
List last updated: 05/14/2010
Back to top
Anderson J, Cundiff L, Schnars B, Gao MX, Mackenzie I, Soll DR. Hypha formation in the white-opaque transition of
Candida albicans. Infect Immun. 1989 Feb;57(2):458-67.
Anderson J, Mihalik R, Soll DR. Ultrastructure and antigenicity of the unique cell wall pimple of the
Candida opaque phenotype. J Bacteriol. 1990 Jan;172(1):224-35.
Lohse MB, Johnson AD. White-opaque switching in
Candida albicans. Curr Opin Microbiol. 2009 Dec;12(6):650-4. Epub 2009 Oct 23.
Alby K, Bennett RJ. Stress-induced phenotypic switching in
Candida albicans. Mol Biol Cell. 2009 Jul;20(14):3178-91. Epub 2009 May 20.
Daniels KJ, Srikantha T, Lockhart SR, Pujol C, Soll DR. Opaque cells signal white cells to form biofilms in
Candida albicans. EMBO J. 2006 May 17;25(10):2240-52. Epub 2006 Apr 20.
Huang G, Wang H, Chou S, Nie X, Chen J, Liu H. Bistable expression of WOR1, a master regulator of white-opaque switching in
Candida albicans. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12813-8. Epub 2006 Aug 11.
Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, Soll DR. N-acetylglucosamine induces white to opaque switching, a mating prerequisite in
Candida albicans. PLoS Pathog. 2010 Mar 12;6(3):e1000806.
Kvaal CA, Srikantha T, Soll DR. Misexpression of the white-phase-specific gene WH11 in the opaque phase of
Candida albicans affects switching and virulence. Infect Immun. 1997 Nov;65(11):4468-75.
Liu H. Co-regulation of pathogenesis with dimorphism and phenotypic switching in
Candida albicans, a commensal and a pathogen. Int J Med Microbiol. 2002 Oct;292(5-6):299-311.
Morschhauser J. Regulation of white-opaque switching in
Candida albicans. Med Microbiol Immunol. 2010 Apr 14. [Epub ahead of print]
Ramirez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhauser J. Environmental induction of white-opaque switching in
Candida albicans. PLoS Pathog. 2008 Jun 13;4(6):e1000089.
Soll DR. Why does
Candida albicans switch? FEMS Yeast Res. 2009 Oct;9(7):973-89. Epub 2009 Aug 7.
Soll DR. High-frequency switching in
Candida albicans. Clin Microbiol Rev. 1992 Apr;5(2):183-203.
Soll DR, Lockhart SR, Zhao R. Relationship between switching and mating in
Candida albicans. Eukaryot Cell. 2003 Jun;2(3):390-7.
Soll DR, Morrow B, Srikantha T. High-frequency phenotypic switching in
Candida albicans. Trends Genet. 1993 Feb;9(2):61-5.
Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, Seringhaus MR, Gerstein M, Yi S, Snyder M, Soll DR. TOS9 regulates white-opaque switching in
Candida albicans. Eukaryot Cell. 2006 Oct;5(10):1674-87. Epub 2006 Sep 1.
Zordan RE, Galgoczy DJ, Johnson AD. Epigenetic properties of white-opaque switching in
Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12807-12. Epub 2006 Aug 9.
Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD. Interlocking transcriptional feedback loops control white-opaque switching in
Candida albicans. PLoS Biol. 2007 Oct;5(10):e256.
List last updated: 05/26/2010
Back to top
Bensen ES, Martin SJ, Li M, Berman J, Davis DA. Transcriptional profiling in
Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol. 2004 Dec;54(5):1335-51.
Davis DA. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol. 2009 Aug;12(4):365-70. Epub 2009 Jul 23.
Davis D. Adaptation to environmental pH in
Candida albicans and its relation to pathogenesis. Curr Genet. 2003 Oct;44(1):1-7. Epub 2003 Jun 18. Review. Erratum in: Curr Genet. 2003 Oct;44(1):58.
Davis D, Wilson RB, Mitchell AP. RIM101-dependent and-independent pathways govern pH responses in
Candida albicans. Mol Cell Biol. 2000 Feb;20(3):971-8.
El Barkani A, Kurzai O, Fonzi WA, Ramon A, Porta A, Frosch M, Muhlschlegel FA. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of
Candida albicans. Mol Cell Biol. 2000 Jul;20(13):4635-47.
Kullas AL, Martin SJ, Davis D. Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol. 2007 Nov;66(4):858-71. Epub 2007 Oct 10.
Ramon AM, Fonzi WA. Diverged binding specificity of Rim101p, the
Candida albicans ortholog of PacC. Eukaryot Cell. 2003 Aug;2(4):718-28.
Ramon AM, Porta A, Fonzi WA. Effect of environmental pH on morphological development of
Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol. 1999 Dec;181(24):7524-30.
List last updated: 05/14/2010
Back to top
De Sordi L, Muhlschlegel FA. Quorum sensing and fungal-bacterial interactions in
Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res. 2009 Oct;9(7):990-9.
Hall RA, Cottier F, Muhlschlegel FA. Molecular networks in the fungal pathogen
Candida albicans. Adv Appl Microbiol. 2009;67:191-212.
Kruppa M. Quorum sensing and
Candida albicans. Mycoses. 2009 Jan;52(1):1-10. Epub 2008 Oct 18.
Langford ML, Atkin AL, Nickerson KW. Cellular interactions of farnesol, a quorum-sensing molecule produced by
Candida albicans. Future Microbiol. 2009 Dec;4:1353-62.
Roman E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen
Candida albicans. FEMS Yeast Res. 2009 Sep;9(6):942-55. Epub 2009 Jun 26.
Langford ML, Hasim S, Nickerson KW, Atkin AL. Activity and toxicity of farnesol towards
Candida albicans are dependent on growth conditions. Antimicrob Agents Chemother. 2010 Feb;54(2):940-2. Epub 2009 Nov 23.
List last updated: 05/14/2010
Back to top
Alonso-Monge R, Roman E, Arana DM, Pla J, Nombela C. Fungi sensing environmental stress. Clin Microbiol Infect. 2009 Jan;15 Suppl 1:17-9.
Arana DM, Nombela C, Pla J. Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of
Candida albicans to phagocytes. J Antimicrob Chemother. 2010 Jan;65(1):54-62. Epub .
Alonso-Monge R, Roman E, Arana DM, Pla J, Nombela C. Fungi sensing environmental stress. Clin Microbiol Infect. 2009 Jan;15 Suppl 1:17-9.
Alonso-Monge R, Roman E, Arana DM, Prieto D, Urrialde V, Nombela C, Pla J. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in
Candida albicans. Fungal Genet Biol. 2010 Apr 11. [Epub ahead of print]
Deveau A, Piispanen AE, Jackson AA, Hogan DA. Farnesol induces hydrogen peroxide resistance in
Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell. 2010 Apr;9(4):569-77. Epub 2010 Jan 29.
Gasch AP. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast. 2007 Nov;24(11):961-76.
Reedy JL, Filler SG, Heitman J. Elucidating the
Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol. 2010 Feb;47(2):107-16. Epub 2009 Sep 13.
Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ. Glucose promotes stress resistance in the fungal pathogen
Candida albicans. Mol Biol Cell. 2009 Nov;20(22):4845-55. Epub 2009 Sep 16.
List last updated: 05/14/10
Back to top
Brand A, Lee K, Veses V, Gow NA. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in
Candida albicans hyphae. Mol Microbiol. 2009 Mar;71(5):1155-64. Epub 2009 Jan 19.
Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. Hyphal orientation of
Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol. 2007 Feb 20;17(4):347-52. Epub 2007 Feb 1.
Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P, Henry-Stanley M, Wells C, Ross K, Gow NA, Gale CA. An internal polarity landmark is important for externally induced hyphal behaviors in
Candida albicans. Eukaryot Cell. 2008 Apr;7(4):712-20. Epub 2008 Feb 15.
Davies JM, Stacey AJ, Gilligan CA.
Candida albicans hyphal invasion: thigmotropism or chemotropism? FEMS Microbiol Lett. 1999 Feb 15;171(2):245-9.
Gow NA. Germ tube growth of
Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
Gow NA, Perera TH, Sherwood-Higham J, Gooday GW, Gregory DW, Marshall D. Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus
Candida albicans. Scanning Microsc. 1994;8(3):705-10.
Nikawa H, Nishimura H, Hamada T, Makihira S, Samaranayake
LP. Relationship between thigmotropism and
Candida biofilm formation in vitro. Mycopathologia. 1998-1999;144(3):125-9.
Sherwood J, Gow NA, Gooday GW, Gregory DW, Marshall D. Contact sensing in
Candida albicans: a possible aid to epithelial penetration. J Med Vet Mycol. 1992;30(6):461-9.
Watts HJ, Very AA, Perera TH, Davies JM, Gow NA. Thigmotropism and stretch-activated channels in the pathogenic fungus
Candida albicans. Microbiology. 1998 Mar;144 ( Pt 3):689-95.
List last updated: 05/14/10
Back to top
Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schafer A, Brown AJ, Gow NA. Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of
Candida albicans. Eukaryot Cell. 2003 Jun;2(3):398-410.
Gow NA. Germ tube growth of
Candida albicans. Curr Top Med Mycol. 1997 Dec;8(1-2):43-55.
Gow NA, Gooday GW. Vacuolation, branch production and linear growth of germ tubes in
Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2195-8.
Gow NA, Gooday GW. A model for the germ tube formation and mycelial growth form of
Candida albicans. Sabouraudia. 1984;22(2):137-44.
Gow NA, Gooday GW. Growth kinetics and morphology of colonies of the filamentous form of
Candida albicans. J Gen Microbiol. 1982 Sep;128(9):2187-94.
Veses V, Gow NA. Vacuolar dynamics during the morphogenetic transition in
Candida albicans. FEMS Yeast Res. 2008 Dec;8(8):1339-48.
Veses V, Richards A, Gow NA. Vacuole inheritance regulates cell size and branching frequency of
Candida albicans hyphae. Mol Microbiol. 2009 Jan;71(2):505-19. Epub 2008 Nov 25.
List last updated: 05/14/2010
Back to top
Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in
Candida albicans. Future Microbiol. 2009 Dec;4:1263-70.
Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-co-regulated genes to
Candida albicans virulence. Cell Microbiol. 2005 Nov;7(11):1546-54.
Lengeler KB, Tielker D, Ernst JF. Protein-O-mannosyltransferases in virulence and development. Cell Mol Life Sci. 2008 Feb;65(4):528-44.
Mavor AL, Thewes S, Hube B. Systemic fungal infections caused by
Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets. 2005 Dec;6(8):863-74.
Mitchell AP. Dimorphism and virulence in
Candida albicans. Curr Opin Microbiol. 1998 Dec;1(6):687-92.
Monod M, Borg-von ZM. Secreted aspartic proteases as virulence factors
of
Candida species. Biol Chem. 2002 Jul-Aug;383(7-8):1087-93.
Roman E, Arana DM, Nombela C, Alonso-Monge R, Pla J. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 2007 Apr;15(4):181-90. Epub 2007 Feb 23.
Rozell B, Ljungdahl PO, Martinez P. Host-pathogen interactions and the pathological consequences of acute systemic
Candida albicans infections in mice. Curr Drug Targets. 2006 Apr;7(4):483-94.
Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of
Candida albicans. Mycoses. 2005 Nov;48(6):365-77.
List last updated: 05/14/2010
Back to top
Selected Topics in Candida
glabrata Biology
Kaur, R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name:
Candida glabrata and its interaction with the host. Curr Opin Microbiol. 2005 Feb;55(4):1259-271. Aug;8(4)378-84.
Li L, Redding S, Dongari-Bagtzoglou A.
Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res. 2007 Mar;86(3):204-15.
Ruhnke M. Epidemiology of
Candida albicans infections and role of non-
Candida-albicans yeasts. Curr Drug Targets. 2006 Apr;7(4):495-504.
Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J.
Candida glabrata,
Candida parapsilosis and
Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2011 May 13. doi: 10.1111/j.1574-6976.2011.00278.x
List last updated: 07/13/11
Back to top
Iraqui I, Garcia-Sanchez S, Aubert S. Dromer F, Ghigo JM, d'Enfert C, Janbon, G. The Yak1p kinase controls expression of adhesins and biofilm formation in
Candida glabrata in a Sir4-dependent pathway. Mol Microbiol. 2005 Feb;55(4);1259-71.
Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova. Detailed comparison of
Candida albicans and
Candida glabrata biofilms under different conditions and its susceptibility to caspofungin and anidulafungin. J Med Microbiol. 2011 May 2. [Epub ahead of print].
Silva S, Negri M, Henriques M, Oliviera, Williams DW, Azeredo J. Adherence and biofilm formation of non-
Candida albicans Candida species. Trends Microbiol. 2011 May;19(5)241-7.
List last updated: 07/13/11
Back to top
Cormack BP, Ghori, N, Falkow S. An adhesin of the yeast pathogen
Candida glabrata mediating adherence to human epithelial cells. Science 1999 Jul 23;285(5427);578-82.
de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M. The cell wall of the human pathogen
Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell. 2008 Nov;7(11):1951-64. Epub 2008 Sep 19.
De Las Pe?as A, Pan SJ, Casta?o I, Alder J, Cregg R, Cormack BP. Virulence-related surface glycoproteins in the yeast pathogen
Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003 Sep 15;17(18):2245-58. Epub 2003 Sep 2.
Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. Glycan microarray analysis of
Candida glabrata adhesin ligand specificity. Mol Microbiol. 2008 May;68(3):547-59.
List last updated: 07/13/11
Back to top
Brun S, Berg鑚 T, Poupard P, Vauzelle-Moreau C, Renier G, Chabasse D, Bouchara JP. Mechanisms of azole resistance in petite mutants of
Candida glabrata. Antimicrob Agents Chemother. 2004 May;48(5):1788-96.
Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS Effect of
Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother. 2009 Sep;53(9):3690-9. Epub 2009 Jun 22.
Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant
Candida glabrata. PLoS One. 2011 Mar 9;6(3):e17589.
Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in
Candida glabrata. Antimicrob Agents Chemother. 2001 Apr;45(4):1174-83.
Tsai HF, Krol AA, Sarti KE, Bennett JE.
Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother. 2006 Apr;50(4):1384-92.
Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. Pdr1 regulates multidrug resistance in
Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol. 2006 Aug;61(3):704-22. Epub 2006 Jun 27.
Vermitsky JP, Edlind TD Azole resistance in
Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother. 2004 Oct;48(10):3773-81.
List last updated: 07/13/11
Back to top
De Las Pe?as A, Pan SJ, Casta?o I, Alder J, Cregg R, Cormack BP. Virulence-related surface glycoproteins in the yeast pathogen
Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003 Sep 15;17(18):2245-58. Epub 2003 Sep 2.
Domergue R, Casta?o I, De Las Pe?as A, Zupancic M, Lockatell V, Hebel JR, Johnson D, Cormack BP. Nicotinic acid limitation regulates silencing of
Candida adhesins during UTI. Science. 2005 May 6;308(5723):866-70. Epub 2005 Mar 17.
Ram?rez-Zavaleta CY, Salas-Delgado GE, De Las Pe?as A, Casta?o I. Subtelomeric silencing of the MTL3 locus of
Candida glabrata requires yKu70, yKu80, and Rif1 proteins. Eukaryot Cell. 2010 Oct;9(10):1602-11. Epub 2010 Jul 30.
Rosas-Hern疣dez LL, Ju疵ez-Reyes A, Arroyo-Helguera OE, De Las Pe?as A, Pan SJ, Cormack BP, Casta?o I. yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in
Candida glabrata. Eukaryot Cell. 2008 Dec;7(12):2168-78. Epub 2008 Oct 3.
List last updated: 07/13/2011
Back to top
Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1632-7. Epub 2004 Jan 26.
Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C The asexual yeast
Candida glabrata maintains distinct a and alpha haploid mating types Eukaryot Cell. 2008 May;7(5):848-58. Epub 2008 Mar 28. Erratum in: Eukaryot Cell. 2010 Apr;9(4):671-2.
Ram?rez-Zavaleta CY, Salas-Delgado GE, De Las Pe?as A, Casta?o I. Subtelomeric silencing of the MTL3 locus of
Candida glabrata requires yKu70, yKu80, and Rif1 proteins. Eukaryot Cell. 2010 Oct;9(10):1602-11. Epub 2010 Jul 30.
Srikantha T, Lachke SA, Soll DR Three mating type-like loci in
Candida glabrata. Eukaryot Cell. 2003 Apr;2(2):328-40.
Wong S, Fares MA, Zimmermann W, Butler G, Wolfe KH. Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast
Candida glabrata. Genome Biol. 2003;4(2):R10. Epub 2003 Jan 23.
List last updated: 07/13/2011
Back to top
Brockert PJ, Lachke SA, Srikantha T, Pujol C, Galask R, Soll DR. Phenotypic switching and mating type switching of
Candida glabrata at sites of colonization. Infect Immun. 2003 Dec;71(12):7109-18.
Lachke SA, Joly S, Daniels K, Soll DR. Phenotypic switching and filamentation in
Candida glabrata. Microbiology. 2002 Sep;148(Pt 9):2661-74.
Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR. Phenotypic switching in
Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP Infect Immun. 2000 Feb;68(2):884-95.
Srikantha T, Daniels KJ, Wu W, Lockhart SR, Yi S, Sahni N, Ma N, Soll DR. Dark brown is the more virulent of the switch phenotypes of
Candida glabrata. Microbiology. 2008 Nov;154(Pt 11):3309-18.
Srikantha T, Zhao R, Daniels K, Radke J, Soll DR. Phenotypic switching in
Candida glabrata accompanied by changes in expression of genes with deduced functions in copper detoxification and stress. Eukaryot Cell. 2005 Aug;4(8):1434-45.
List last updated: 07/13/2011
Back to top
Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, Rohde B, Bauser C, Bader O, Sanglard D. Gain of function mutations in CgPDR1 of
Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009 Jan;5(1):e1000268. Epub 2009 Jan 16.
Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, Posteraro B, Vandeputte P, Sanglard D. Loss of mitochondrial functions associated with azole resistance in
Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother. 2011 May;55(5):1852-60. Epub 2011 Feb 14.
Kaur R, Ma B, Cormack BP. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of
Candida glabrata. Proc Natl Acad Sci U S A. 2007 May 1;104(18):7628-33. Epub 2007 Apr 24.
Kamran M, Calcagno AM, Findon H, Bignell E, Jones MD, Warn P, Hopkins P, Denning DW, Butler G, Rogers T, M?hlschlegel FA, Haynes K. Inactivation of transcription factor gene ACE2 in the fungal pathogen
Candida glabrata results in hypervirulence. Eukaryot Cell. 2004 Apr;3(2):546-52.
Jacobsen ID, Brunke S, Seider K, Schwarzm?ller T, Firon A, d'Enf駻t C, Kuchler K, Hube B.
Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun. 2010 Mar;78(3):1066-77. Epub 2009 Dec 14.
List last updated: 07/13/2011
Back to top
Selected Topics in Candida
auris Biology
Navalkele BD, Revankar S, Chandrasekar P (2017) Candida auris: a worrisome, globally emerging pathogen. Expert Rev Anti Infect Ther 15(9):819-827.
Sears D, Schwartz BS (2017) Candida auris: An emerging multidrug-resistant pathogen. Int J Infect Dis 63:95-98.
Spivak ES, Hanson KE (2018) Candida auris: an Emerging Fungal Pathogen. J Clin Microbiol 56(2).
List last updated: 11/13/2019
Back to top
Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2017) Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis 64(2):134-140.
Munoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9(1):5346.
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R (2019) ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 10:1445.
List last updated: 11/13/2019
Back to top