CGD Paper


Page Contents: Abstract | Summary Chart | Author Search |

Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19(8):621-9
Pubmed Entry CGD Curated Comments & Errata


Abstract:BACKGROUND: Hsp90 is an environmentally contingent molecular chaperone that influences the form and function of diverse regulators of cellular signaling. Hsp90 potentiates the evolution of fungal drug resistance by enabling crucial cellular stress responses. Here we demonstrate that in the leading fungal pathogen of humans, Candida albicans, Hsp90 governs cellular circuitry required not only for drug resistance but also for the key morphogenetic transition from yeast to filamentous growth that is crucial for virulence. This transition is normally regulated by environmental cues, such as exposure to serum, that are contingent upon elevated temperature to induce morphogenesis. The basis for this temperature dependence has remained enigmatic. RESULTS: We show that compromising Hsp90 function pharmacologically or genetically induces a transition from yeast to filamentous growth in the absence of external cues. Elevated temperature relieves Hsp90-mediated repression of the morphogenetic program. Hsp90 regulates morphogenetic circuitry by repressing Ras1-PKA signaling. Modest Hsp90 compromise enhances the phenotypic effects of activated Ras1 signaling whereas deletion of positive regulators of the Ras1-PKA cascade blocks the morphogenetic response to Hsp90 inhibition. Consistent with the requirement for morphogenetic flexibility for virulence, depletion of C. albicans Hsp90 attenuates virulence in a murine model of systemic disease. CONCLUSIONS: Hsp90 governs the integration of environmental cues with cellular signaling to orchestrate fungal morphogenesis and virulence, suggesting new therapeutic strategies for life-threatening infectious disease. Hsp90's capacity to govern a key developmental program in response to temperature change provides a new mechanism that complements the elegant repertoire that organisms utilize to sense temperature.
Status: Published Type: Journal Article PubMed ID: 19327993


Topics addressed in this paper
  • To find other papers on a gene and topic, click on the colored ball in the appropriate box.
    displays other papers with information about that topic for that gene.
    displays other papers in CGD that are associated with that topic.
    The topic is addressed in these papers but does not describe a specific gene or chromosomal feature.

  • To go to the Locus page for a gene, click on the gene name.

Topics
Genes linked to topics
CSC25
(C. albicans)
CYR1
(C. albicans)
HSP90
(C. albicans)
IRA2
(C. albicans)
PDE1
(C. albicans)
PDE2
(C. albicans)
RAS1
(C. albicans)
TPK1
(C. albicans)
TPK2
(C. albicans)
Candida albicans







Filamentous Growth







Function/Process







Genetic Interactions
Mutants/Phenotypes







Regulatory Role







Signal Transduction







Strains/Constructs
Techniques and Reagents







Author Searches
To find contact information or other publications by the authors of this paper, follow these three steps:

(1) Choose an author, (2) Choose a search parameter, (3) Click to implement.




AltStyle によって変換されたページ (->オリジナル) /