| Accession: | |
|---|---|
| Functional site class: | Phosphotyrosine ligands bound by SH2 domains |
| Functional site description: | Src Homology 2 (SH2) domains are small modular domains found within a great number of proteins involved in different signalling pathways. They are able to bind specific motifs containing a phosphorylated tyrosine residue, propagating the signal downstream by promoting protein-protein interactions and/or modifying enzymatic activities. Different families of SH2 domains may have different binding specificity, which is usually determined by a few residues C-terminal with respect to the pY (positions +1 to +4). Non-phosphorylated peptides do not bind to the SH2 domains. Several different binding motifs are known, for example: pYEEI (Src-family SH2 domains), pY [IV].[VILP] (SH-PTP2, phospholipase C-gamma), pY.[N] (GRB2). The interaction between SH2 domains and their substrates is however dependent also on cooperative contacts of other surface regions. |
| ELMs with same func. site: | LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 |
| ELM Description: | Class IC SH2 domains bind a pTyr motif with specificity for Asn at the pY+2 position. Peptide scanning experiments define two main preferences at the pY+1 position that include acidic or hydrophobic residues (Tinti,2013; Huang,2008). While Grb2/Grb7/Grap/Gads Sh2s bind to both types of motifs, Grb10/14 and TNS1/4 have a strong preference for acidic residues at pY+1. At pY+1, hydrophobic residues make Van der Waals interactions with W121, F108 and Q106 of the SH2 domain, while acidic residues extend further into the groove, making polar interactions with Q106 and N143. The Gads SH2 domain has a more selective pY+1 pocket which disfavours bulky or large aliphatic residues (Cho,2004). The pTyr provides the basal affinity, binding into a highly conserved pocket through multiple stabilizing interactions. The binding mode is determined by the conformation of the EF and BG loops, which plug access to the pY+3 pocket in these SH2 domains forcing the ligand to adopt a closed Type I β-turn conformation that exposes the +2 Asn prominently for binding (Kaneko,2010; Rahuel,1996). The Asn residue H bonds with the backbone of residues K109 and L120 in the SH2 domain. Proline is excluded from position pY+1 as it would prevent the U-shaped turn conformation (Huang,2008; Liu,2010). More open or twisted turn motifs are present in AICD, CDC28 and ErbB2 (Das,2011; Inaba,2017; Ivancic,2003). The peptide ligand is held in place by backbone H bonds of pY-1 and pY+1 to the SH2 domain, and by an intramolecular H bond between pY+3 and pTyr that stabilizes the turn. Val or Met at pY+3 can make weak hydrophobic interactions with the SH2 domain. Positive charge in pY+3, pY+4 and pY+5 provides specificity, preventing binding to Class 1C SH2s with a positive surface patch surrounding the pTyr pocket (Grb2) but favouring Sh2s with negatively charged surfaces (Grb7) (Fiddes,1998; Spuches,2007). Grb7,10,14 and TNS1,4 have reduced specificity for N at +2 and can bind motifs not matched by the ELM pattern. |
| Pattern: | (Y)([EDST]|[MLIVAFYHQW])N. |
| Pattern Probability: | 0.0003175 |
| Present in taxon: | Metazoa |
| Interaction Domain: |
SH2 (PF00017)
SH2 domain
(Stochiometry: 1 : 1)
PDB Structure: 1QG1
|