ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

DOC_CYCLIN_yCln2_LP_2

Accession:
Functional site class:
Cyclin N-terminal Domain Docking Motifs
Functional site description:
Cyclin-dependent kinases (Cdks) coordinate hundreds of molecular events during the cell cycle via Ser/Thr phosphorylation. With cell cycle progression, different cyclins bind to Cdks to control their function by providing docking sites for substrates and also by modulating Cdk active site specificity. Docking motifs control the timing of cell cycle events by enabling preferential interaction and phosphorylation of substrates by a specific cyclin/Cdk complex. Cyclins use the conserved hydrophobic pocket (hp) to bind docking motifs on partner proteins. In the budding yeast, the divergence of the hp has given rise to a family of related RxL-like docking motifs consisting of a hydrophobic core modulated by positively charged (RxLF, RxLxF) or hydrophobic (LxF, PxF, NLxxxL) residues. Cyclins may use additional surfaces to dock substrates, as with the mammalian Cyclin D-specific (DOC_CYCLIN_D_Helix_1) and the budding yeast Cln2-specific leucine- and proline-rich LP (DOC_CYCLIN_yCln2_LP_2) motifs.
ELMs with same func. site: DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_CYCLIN_yCln2_LP_2
ELM Description:
The budding yeast late-G1 Cln1/2 and Ccn1-type cyclins recognize leucine- and proline-rich (LP) docking motifs on G1-specific substrates (Koivomagi,2011; Bhaduri,2011; Bhaduri,2015, Bandyopadhyay,2020). LP motif docking is conserved across fungal Cln-type cyclins (Bandyopadhyay,2020) and is highly specific, not being recognized by early-G1 Cln3 or by S- and M-phase cyclins (Bhaduri,2015; Bhaduri,2011). Mutational studies suggest that the recognition interface for LP motifs on Cln1/2 is distinct from the hydrophobic pocket (hp) described to bind other cyclin docking motifs (Bhaduri,2015). However, in the absence of a solved structure, the binding site could not be mapped conclusively. LP motif-driven multi-site substrate phosphorylation (Ord,2019) is largely independent of orientation and distance to the Cdk p-site (Bhaduri,2011, Koivomagi,2013).
Many known Cln1/2-specific Cdk1 substrates harbour LP docking motifs. The role of the motif was confirmed in Sic1, Ste5 and Ste20 by truncation/mutation studies and dedicated assays monitoring associated phenotypic outcomes (Koivomagi,2011; Bhaduri,2011). Mutation of the Ste20 motif "SLDDPIQF" revealed that no single residue is absolutely required for Cln2 binding, but mutations at the L, P or F residues led to partial phenotypes (Bhaduri,2011). At the same time, four Cln2-binding sequences (those of Sic1, Whi5, Exo84 and Ste5) contained exact matches of the core LLPP motif with no requirement for a large hydrophobic/aromatic residue in the following residue positions (Bhaduri,2011). A mutational scan using a functional readout confirmed the requirement for L and P at positions 1 and 4, and showed that hydrophobic/aromatic residues at positions 5 and 7 modulate the motif binding affinity and functional potency (Bandyopadhyay,2020), being required when the core motif is weak. With no structure available, the final motif pattern was derived from the mutation analyses and the evolutionary conservation of multiple LP motifs (Bhaduri,2011).
Pattern: (L[MLIV]PP)|(((L[LMIV]PA)|(L..P))[ILMVAFYW].[MLIVFHPAY])
Pattern Probability: 0.0001070
Present in taxon: Saccharomycetaceae
Interaction Domain:
Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1 : 1)
o See 18 Instances for DOC_CYCLIN_yCln2_LP_2
Cyclin-dependent kinases (Cdks) are central regulatory enzymes of the eukaryotic cell cycle. The sequential attachment of different cyclins to Cdks represents the periodic driving force that ensures a controlled progression through the cell cycle. Although there can be functional overlap, the various cyclin/Cdk complexes are specialized for optimum performance of discrete tasks.

The cell cycle of the budding yeast Saccharomyces cerevisiae is remarkably simplified compared to that of mammalian cells and therefore it was the subject of many cell-cycle related studies and is currently better understood. Here a single Cdk, Cdk1, associates with different cyclins to mediate all major cell cycle transitions. Cyclins Cln1–3 are triggers for G1 and G1/S, while among B-type cyclins Clb5 and Clb6 drive S phase, Clb3 and Clb4 are specific for early mitotic events, and Clb1 and Clb2 complete the progression to mitosis. Detailed analyses of the budding yeast cell cycle provide important clues on the mechanisms that allow the fine-tuning of thresholds and the ordering of the switch points that drive cell cycle events. These mechanisms rely strongly on the linear encoding of SLiMs to direct cell cycle phosphorylation events (Ord,2019). Limited evidence suggests that these mechanisms have parallels in mammalian cyclin-Cdk regulation.

Cyclins from yeasts and animals harbour a highly conserved surface patch called the hydrophobic pocket (hp) that recognizes docking motifs on partner proteins (DOC_CYCLIN_RxL_1; Loog,2005). The RxL docking motif mediates binding to the hp of a broad range of cyclins from budding yeast (Clb1-6) and mammalian cells (cyclins D/E/A/B). Studies in budding yeast have identified more specific motifs that target the hp. For example, G2 cyclin Clb3 recognizes substrates with the PxF motif (DOC_CYCLIN_yClb3_PxF_3; Ord,2020), and when Cdk is coupled to mitotic cyclins Clb1 or Clb2, the resulting M-Cdk complex recognizes the LxF motif (DOC_CYCLIN_yClb1_LxF_4; Ord,2019). Likewise, the NLxxxL motif is homologous to RxL, but has evolved exclusive specificity for S-phase cyclins Clb 5/6 (DOC_CYCLIN_yClb5_NLxxxL_5; Faustova,2021). Other cyclin-specific motifs include the leucine- and proline-rich LP docking motif (DOC_CYCLIN_yCln2_LP_2; Koivomagi,2011; Bhaduri,2011), which directs binding to late G1-cyclins Cln1/2. Specific docking motifs are also present in mammalian cyclins, as with the cyclin D-specific helical docking motif (DOC_CYCLIN_D_helix_1; Topacio,2019) that mediates binding of Rb proteins to Cyclin D to drive the G1/S transition. Cyclin docking motifs are not only employed by substrates, they are also frequently employed by regulators of cyclin/Cdk complexes, for example the mammalian p27Kip1 and p21Cip1 cyclin inhibitors (1JSU; 6P8E, 6P8H) which hide the site from substrates or the yeast Swe1 that keeps M-CDK in an inactive state during earlier phases of the cell cycle (Ord,2019).

The differences in specificity of hp-docking motifs are explained by changes in the residues that make up the 210-MRAILVDW-217 helix in the hydrophobic pocket (numbering according to human cyclin A2) (Ord,2019). The structures of several RxL motifs (p53, pRb, E2F, and p107) bound to cyclin A2 (1H24; 1H25; 1H26; 1H28) reveal that the central R/K residue of the RxL motif hydrogen bonds to E220 in cyclin A2, while two hydrophobic/aromatic positions bind to an apolar groove made up by M210, I213, L214 and W217 (Russo,1996; Lowe,2002). Residues surrounding the hp (E224 and R250) shape its charge specificity and determine a preference for basic or hydrophobic residues in the vicinity of the core motif. In the budding yeast, loss of the acidic E220 residue in G2- and M-phase cyclins weakens their preference for RxL sequences, favouring the emergence of related (PxF and LxF) motifs that preserve the hydrophobic mode of interaction (Bhaduri,2011; Ord,2019; Ord,2020). Similar changes in the hydrophobic pocket of mammalian cyclins make M-cyclin (Cyclin B) a poor binder of RxL motifs.

Early cyclin/Cdk complexes have low intrinsic activity toward the optimal substrate motif compared to the potent mitotic Cdks, still they need to initiate such important events as Start and S phase. The cyclin-specific docking sites described above are able to compensate for the gradually decreasing specificity of early cyclin/Cdk complexes (Loog,2005; Koivomagi,2011; Bhaduri,2011; Bhaduri,2015; Ord,2019; Ord,2019). Also, cyclins are not just activators of Cdk1 but are also modulators of the catalytic specificity of the kinase active site (Koivomagi,2011). Therefore, modulation of Cdk1 active-site substrate specificity combined with cyclin-specific docking enables regulated changes in Cdk1 specificity and provides a wide range of selective switch points that drive cell cycle transitions (Koivomagi,2011). Mammalian cyclins might use similar mechanisms to ensure specific substrate docking at different stages of the cell cycle, but hp-docking motifs different from the canonical RxL sequence remain to be elucidated with one exception, the reverse RxL motif in Skp2 (DOC_CYCLIN_RevRxL_6; Kelso,2021).
o 10 selected references:


o 7 GO-Terms:
Biological Process:
Regulation Of Cdk Activity (also annotated in these classes: DOC_CKS1_1 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb5_NLxxxL_5 MOD_CDK_SPK_2 MOD_CDK_SPxxK_3 ELM:old_LIG_14-3-3_2 )
Cell Division (also annotated in these classes: DEG_SCF_TRCP1_1 DOC_CDC14_PxL_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_MIT_MIM_1 LIG_EABR_CEP55_1 MOD_CDC14_SPxK_1 MOD_NEK2_1 MOD_NEK2_2 MOD_Plk_1 )
Mitotic Cell Cycle Phase Transition (also annotated in these classes: DOC_CYCLIN_yClb1_LxF_4 )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Nucleus (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa CLV_TASPASE1 DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_MDM2_SWIB_1 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DEG_SPOP_SBC_1 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 DOC_USP7_MATH_1 DOC_USP7_MATH_2 DOC_USP7_UBL2_3 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ANK_PxLPxL_1 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CaM_1-14-15-16_REV_1 LIG_CaMK_CASK_1 LIG_CORNRBOX LIG_CSL_BTD_1 LIG_CtBP_PxDLS_1 LIG_CtBP_RRT_2 LIG_DCNL_PONY_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH1_1 LIG_FHA_1 LIG_FHA_2 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_HOMEOBOX LIG_HP1_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KEPE_1 LIG_KEPE_2 LIG_KEPE_3 LIG_LEDGF_IBM_1 LIG_LSD1_SNAG_1 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_1 LIG_MYND_2 LIG_MYND_3 LIG_NBox_RRM_1 LIG_NRBOX LIG_Nrd1CID_NIM_1 LIG_PALB2_WD40_1 LIG_PCNA_APIM_2 LIG_PCNA_PIPBox_1 LIG_PCNA_TLS_4 LIG_PCNA_yPIPBox_3 LIG_PTAP_UEV_1 LIG_RBL1_LxSxE_2 LIG_RB_LxCxE_1 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RRM_PRI_1 LIG_Rrp6Rrp47_Mtr4_1 LIG_Sin3_1 LIG_Sin3_2 LIG_Sin3_3 LIG_SUFU_1 LIG_SUMO_SIM_anti_2 LIG_SUMO_SIM_par_1 LIG_TPR LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_UBA3_1 LIG_ULM_U2AF65_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WRPW_1 LIG_WRPW_2 LIG_WW_2 MOD_AAK1BIKe_LxxQxTG_1 MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_NEK2_1 MOD_NEK2_2 MOD_PIKK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SUMO_for_1 MOD_SUMO_rev_2 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Molecular Function:
Protein Kinase Binding (also annotated in these classes: DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL3_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb3_PxF_3 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_MEF2A_6 LIG_FZD_DVL_PDZ LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 MOD_CDK_SPK_2 MOD_CDK_SPxxK_3 MOD_NEK2_1 MOD_NEK2_2 MOD_Plk_1 MOD_Plk_4 )
Cyclin-Dependent Protein Serine/Threonine Kinase Regulator Activity (also annotated in these classes: DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 )


o 18 Instances for DOC_CYCLIN_yCln2_LP_2
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
P13186 KIN2
KIN2_YEAST
59 62 RNDQQQAPLMPPADIKQGKE TP 2 Saccharomyces cerevisiae S288c
1
P39969 BOI2
BOI2_YEAST
353 356 NNANIYNQLMPPANVDQRAS TP 2 Saccharomyces cerevisiae S288c
1
P39083 RGA1
RGA1_YEAST
329 335 ELLTSVLHSPVSVNMKNPKG TP 2 Saccharomyces cerevisiae S288c
1
P40095 YER158C
YEY8_YEAST
318 324 PEPITSLDQPVEIIKQSFST TP 2 Saccharomyces cerevisiae S288c
1
Q99332 FRT1
HPH1_YEAST
18 21 NPGSRNCTLLPPSFPRGFCK TP 2 Saccharomyces cerevisiae (Baker"s yeast)
1
P38283 SLI15
SLI15_YEAST
513 516 NYRLTNLQLLPPAEAERDDL TP 2 Saccharomyces cerevisiae S288c
1
P47046 IRC8
IRC8_YEAST
478 481 TTNRDKSKLLPPFRFTSESD TP 2 Saccharomyces cerevisiae S288c
1
P41832 BNI1
BNI1_YEAST
897 903 EFEKDRLEPPIHIKKPKVKK TP 2 Saccharomyces cerevisiae S288c
1
P21192 ACE2
ACE2_YEAST
400 406 RINGNSLRSPFLVGTDKSRD TP 2 Saccharomyces cerevisiae S288c
1
Q03898 FIN1
FIN1_YEAST
47 53 TSQKEFLKPPMRISPNKTDG TP 2 Saccharomyces cerevisiae S288c
1
P38261 EXO84
EXO84_YEAST
294 297 ESHSNSPALLPPLKAGQNGN TP 4 Saccharomyces cerevisiae S288c
1
P43560 LAM5
LAM5_YEAST
23 29 TDSVKQLGPPFEHASNNDNA TP 3 Saccharomyces cerevisiae S288c
1
P38634 SIC1
SIC1_YEAST
137 140 EEEEEGEVLLPPSRPTSARQ TP 10 Saccharomyces cerevisiae S288c
1
Q12416 WHI5
WHI5_YEAST
138 141 YDGHVSMPLLPPTTPKSRRS TP 7 Saccharomyces cerevisiae S288c
1
Q03497 STE20
STE20_YEAST
88 94 DNNVVSLDDPIQFTRVSSSS TP 5 Saccharomyces cerevisiae S288c
1
P32917 STE5
STE5_YEAST
278 281 SRFPPYSPLLPPFGLSYTPV TP 6 Saccharomyces cerevisiae S288c
1
P40091 PEA2
PEA2_YEAST
199 205 DIKPIPLDDPVKFLKNGINS TP 2 Saccharomyces cerevisiae S288c
1
P40316 PDS1
SECU_YEAST
40 46 RSHSNILKPPVRLDQLKRDA TP 2 Saccharomyces cerevisiae S288c
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /