ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

LIG_SH3_2

Accession:
Functional site class:
SH3 domain ligands
Functional site description:
The SH3 domain is one of the best characterized protein domains. SH3 domains are involved in a wide-range of important cellular processes including intracellular signaling, cytoskeletal rearrangements and cell movement, cell growth and immune responses. They bind to proline-rich sequences with moderate selectivity. Early studies identified "PxxP" as a core conserved sequence motif for SH3 binding. These motifs are referred to as canonical binders, among which class I and class II ligands are distinguished based on their orientation. Since then, SH3 domains recognizing partners with multiple atypical SH3 binding motifs have also been described.
ELMs with same func. site: LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6
ELM Description:
this is the motif recognized by class II SH3 domains
Pattern: P..P.[KR]
Pattern Probability: 0.0011112
Present in taxons: Bos taurus Gallus gallus Homo sapiens Komagataella pastoris Mus musculus Opisthokonta Rattus norvegicus Saccharomyces cerevisiae
Interaction Domains:
PDB Structure: 1EFN
o See 19 Instances for LIG_SH3_2
SH3 (SRC Homology 3) domains constitute one of the largest protein domain families with over 300 representatives in the human proteome and 30 in the yeast proteome. SH3 domains are protein recognition modules that typically function in the assembly of signalosomes and signal transduction (Zarrinpar,2003) in signaling pathways, such as cell growth regulation, endocytosis and remodeling of the cytoskeleton. They are small protein interaction modules consisting of only 60 amino acids. At the secondary structure level, the domain displays a beta-sandwich arrangement of five beta-sheets, 3 loops and a short 310 helix (Saksela,2012). The classical SH3 ligand binding site is made up by two hydrophobic pockets and a negatively charged one usually called the specificity pocket, formed by the RT and the n-Src loops.
SH3 domains generally recognise proline-rich motifs forming poly-proline type helices (PPII helixes) when bound to the SH3 (Aitio,2008). Most of the known and well-studied ligands of SH3 domains have the "PxxP" core motif. The ligands that contain the "PxxP" minimal sequence are now referred to as canonical or typical SH3 binding motifs.
Based on the extensive searches for SH3 binding motifs, a classification system was established where Class I (LIG_SH3_1) and Class II (LIG_SH3_2) ligands were distinguished (Fernandez-Ballester,2004). Because of the pseudo-symmetrical nature of the PPII helix, the PXXP-binding site can recognize peptides in both orientations by using two different binding modes. In both cases the prolines make contact with the two hydrophobic pockets, but the orientation of the peptide will be determined by the position of the charged residue binding to the specificity pocket; the motif description is "(R/K)xxPxxP" for class I and "PxxPx(R/K)" for class II (Aitio,2008). A key conserved surface Trp residue in the SH3 binding pocket is known to adopt two different orientations that, in turn, determine the type of ligand (I or II) specifically recognized by the domain. Interestingly, some of the SH3 domains are capable of binding ligands both in Class I and Class II orientation (Fernandez-Ballester,2004). Interestingly, motif binding by at least a subset of SH3 domains seems to be regulated by receptor tyrosine kinases (RTKs) through phosphorylation of a conserved C-terminal Tyr residue within the domain that disturbs motif binding and thus leads to the collapse of the associated signaling networks (Dionne,2018).
The canonical Class I and II motifs are recognized by diverse SH3 domains. However, a large-scale study on human SH3 domains showed that almost half of the investigated domains exhibit atypical binding specificities with no "PxxP" core (Teyra,2017). The hitherto identified atypical SH3 motifs include the "PxxDY" (LIG_SH3_PxxDY_5) (Li,2005; Kaneko,2008; Saksela,2012), different "RxxK-type" motifs (LIG_SH3_PxxxRxxKP_6; LIG_SH3_PxRPPK_7; LIG_SH3_PxxPPRxxK_8) (Liu,2003; Lewitzky,2001; Harkiolaki,2009; Lewitzky,2004), Px[PA]xPR (LIG_SH3_CIN85_PxpxPR_1) (Kurakin,2003; Rouka,2015), and "RKxxYxxY" (Kang,2000). These atypical recognition specificities are usually associated with only a specific subset of the SH3-containing proteins, which often belong to specific processes/pathways.
"PxxDY'' motif binding has only been identified for a relatively few SH3 domain-containing proteins, including Nck1 (P16333) and Eps8L1 (Q8TE68). Nck1 is an adaptor protein functioning in signal transduction between diverse membrane receptors and the cytoskeleton (Li,2001). During the activation of T-cell receptors (TCRs), Nck1 binds to the "PxxDY'' motif of the CD3ε subunit (32317279). In a phage display screening of 296 human SH3 domains only the Nck1, Nck2, Eps8, Eps8L1, Eps8L3 and Eps8L2 proteins were identified as binders of the motif in Cd3ε, indicating that it is highly specific (Kesti,2007). Besides CD3ε, e3b1/abi-1 and US6NL were also demonstrated to have a functional "PxxDY" motif that binds to the SH3 of Eps8 (Mongiovi,1999). Interestingly, two E.coli effector proteins, namely NleH1 and NleH2, have been identified as Eps8 binders. During infection, probably due to being bound by NleH1 and NleH2, Eps8 shows an altered localization pattern within the cytoplasm that might compromise the formation of new microvilli (Pollock,2022).
RxxK-type SH3-binding motifs are specifically recognized by the second (C-terminal) SH3 domains of GRB2 (P62993) and GRAP2 (also called GADS (O75791)) (Liu,2003; Lewitzky,2001; Harkiolaki,2009; Lewitzky,2004), and the two STAM proteins, STAM1 (Q92783) and STAM2 (O75886) have also been described to bind certain RxxK motifs (Kato,2000). RxxK motif-mediated interactions are typically involved in the signaling of T-cell and B-cell receptors, as well as receptor tyrosine kinases. The RxxK motifs are highly versatile: there is a canonical version "PxxxRxxKP" (LIG_SH3_PxxxRxxKP_6) and some variants where the RxxK is preceded by a PxxP motif in an overlapping "PxRPxK" (LIG_SH3_PxRPPK_7)(Harkiolaki,2009) or non-overlapping "PxxPxRxxK" arrangement (LIG_SH3_PxxPPRxxK_8; Lewitzky,2004). There is also a variant described where the R and K residues are placed further apart "RxxxxK" (Harkiolaki,2009). There is at least one available structure for all these variants, therefore the differences in secondary structures adopted in the bound peptides as well as in the contacts established with the SH3 pockets/residues are well-understood (Harkiolaki,2009). Most known RxxK motif-containing proteins, such as LCP2/SLP-76, GAB1, 2 and 3, B-cell linker protein (BLNK), STAM-binding protein and Ubiquitin carboxyl-terminal hydrolase 8 (mUBPY) employ the canonical RxxK for SH3 binding. Some proteins, such as GABs, employ more than one RxxK type, while, for instance, MAP4K1/HPK1 employs the combined motif "PxxPxRxxK" for binding to the C-terminal SH3 of GADS (Lewitzky,2004).
o 19 selected references:


o 10 GO-Terms:
Biological Process:
Cell Communication (also annotated in these classes: LIG_FAT_LD_1 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxxDY_5 LIG_WW_1 LIG_WW_2 LIG_WW_3 )
Cell Growth And/Or Maintenance (also annotated in these classes: LIG_EVH1_1 LIG_FAT_LD_1 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxxDY_5 LIG_WW_1 LIG_WW_2 LIG_WW_3 )
Signal Transduction (also annotated in these classes: DEG_ODPH_VHL_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_PP1_RVXF_1 DOC_TBK1_STING_1 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_DLG_GKlike_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_GYF LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF6_MATH_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_ProDKin_1 )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Plasma Membrane (also annotated in these classes: DEG_CRBN_cyclicCter_1 DOC_GSK3_Axin_1 LIG_CaM_1-17_6 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_NSCaTE_8 LIG_EH_1 LIG_FAT_LD_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_3 LIG_SH3_PxxDY_5 LIG_WW_1 TRG_Cilium_Arf4_1 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_LysEnd_GGAAcLL_1 )
Focal Adhesion (also annotated in these classes: LIG_FAT_LD_1 LIG_Integrin_KxxGD_FGGC_5 LIG_Integrin_RGD_TGFB_3 LIG_Integrin_RGDW_4 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_Vh1_VBS_1 )
Molecular Function:
Protein Domain Specific Binding (also annotated in these classes: DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL3_1 DOC_MIT_MIM_1 LIG_14-3-3_CanoR_1 LIG_14-3-3_CterR_2 LIG_AP_GAE_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CAP-Gly_1 LIG_CSK_EPIYA_1 LIG_CSL_BTD_1 LIG_deltaCOP1_diTrp_1 LIG_EH_1 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FHA_1 LIG_FHA_2 LIG_G3BP_FGDF_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RRM_PRI_1 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_ULM_U2AF65_1 LIG_WH1 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 )
Binding (also annotated in these classes: DOC_PP1_RVXF_1 LIG_CaM_IQ_9 LIG_EH_1 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxxDY_5 LIG_WH1 LIG_WW_1 LIG_WW_2 LIG_WW_3 )
Protein Binding (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CKS1_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_WD40_RPTOR_TOS_1 LIG_14-3-3_ChREBP_3 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CNOT1_NIM_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_FHA_1 LIG_FHA_2 LIG_FXI_DFP_1 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_IBAR_NPY_1 LIG_Integrin_isoDGR_2 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LEDGF_IBM_1 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LRP6_Inhibitor_1 LIG_LSD1_SNAG_1 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_SIV_4 LIG_LYPXL_yS_3 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_3 LIG_Nrd1CID_NIM_1 LIG_NRP_CendR_1 LIG_OCRL_FandH_1 LIG_PALB2_WD40_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex3_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RBL1_LxSxE_2 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RuBisCO_WRxxL_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 LIG_SPRY_1 LIG_SUFU_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_Trf4_IWRxY_1 LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Sh3-Domain Binding (also annotated in these classes: LIG_SH3_1 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 )


o 19 Instances for LIG_SH3_2
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
O55207 Synj2
SYNJ2_RAT
1120 1125 VPNRPRPPHPPQRPPPPTGL TP 4 Rattus norvegicus (Norway rat)
5
1
Q07889 SOS1
SOS1_HUMAN
1151 1156 TDEVPVPPPVPPRRRPESAP TP 4 Homo sapiens (Human)
1
Q13444 ADAM15
ADA15_HUMAN
767 772 QASALSFPAPPSRPLPPDPV TP 3 Homo sapiens (Human)
1
P26662
POLG_HCVJA
2323 2328 LPSTKAPPIPPPRRKRTVVL TP 8 Hepatitis C virus (isolate Japanese)
1
P53112 PEX14
PEX14_YEAST
87 92 YLYEAMPPTLPHRDWKDYFV TP 3 Saccharomyces cerevisiae (Baker"s yeast)
P03406 nef
NEF_HV1BR
72 77 EVGFPVTPQVPLRPMTYKAA TP 3 Human immunodeficiency virus type 1 (BRU ISOLATE)
P14598 NCF1
NCF1_HUMAN
363 368 TQRSKPQPAVPPRPSADLIL TP 3 Homo sapiens (Human)
Q13153 PAK1
PAK1_HUMAN
13 18 LDIQDKPPAPPMRNTSTMIG TP 4 Homo sapiens (Human)
1
1
P01106 MYC
MYC_HUMAN
60 65 FELLPTPPLSPSRRSGLCSP TP 2 Homo sapiens (Human)
2
P50570 DNM2
DYN2_HUMAN
829 834 SDLFPAPPQIPSRPVRIPPG TP 5 Homo sapiens (Human)
1
1
Q05397 PTK2
FAK1_HUMAN
712 717 SGGSDEAPPKPSRPGYPSPR TP 4 Homo sapiens (Human)
Q13905 RAPGEF1
RPGF1_HUMAN
284 289 VVDNSPPPALPPKKRQSAPS TP 1 Homo sapiens (Human)
P29352 Ptpn22
PTN22_MOUSE
614 619 RTDDEIPPPLPERTPESFIV TP 3 Mus musculus (House mouse)
Q07889 SOS1
SOS1_HUMAN
1152 1157 DEVPVPPPVPPRRRPESAPA TP 2 Homo sapiens (Human)
P34152 Ptk2
FAK1_MOUSE
750 755 SGGSDEAPPKPSRPGYPSPR TP 5 Mus musculus (House mouse)
P35465 Pak1
PAK1_RAT
13 18 LDVQDKPPAPPMRNTSTMIG TP 2 Rattus norvegicus (Norway rat)
Q05193 DNM1
DYN1_HUMAN
833 838 FGPPPQVPSRPNRAPPGVPS TP 1 Homo sapiens (Human)
P27986 PIK3R1
P85A_HUMAN
308 313 RQPAPALPPKPPKPTTVANN TP 1 Homo sapiens (Human)
P27986 PIK3R1
P85A_HUMAN
305 310 WNERQPAPALPPKPPKPTTV TP 2 Homo sapiens (Human)
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /