ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

DEG_Nend_UBRbox_3

Accession:
Functional site class:
N-degron
Functional site description:
The N-end rule pathway regulates protein stability by targeting proteins for ubiquitin-dependent proteasomal degradation. Polyubiquitylation of N-end rule substrates depends on their recognition by N-recognins, specific E3 ubiquitin ligases that use their conserved UBR-box and N-box domains to bind specific N-terminal protein motifs, called N-degrons, in their target proteins. N-degrons are defined by a destabilizing N-terminal residue. Type I destabilizing residues can either occur as primary destabilizing residues, which are positively charged amino acids directly recognized by N-recognins, or as secondary and tertiary destabilizing amino acids, which can be conjugated to a primary destabilizing residue. N-degrons containing type I destabilizing residues are specifically bound by the UBR-box of N-recognins. In contrast, type II destabilizing residues, which comprise bulky hydrophobic amino acids, initiate protein degradation by binding to the N-box of N-recognins.
ELMs with same func. site: DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4
ELM Description:
This class of N-degrons is defined by a type I tertiary destabilizing Asn or Gln residue in the N-terminal position that is required to be deamidated and subsequently arginylated for recognition by the UBR-box of N-recognins (Tasaki,2012). Asn- or Gln-containing pre-N-degrons can be generated by internal cleavage of a protein. Generation by Met excision has not been investigated yet as the known N-terminal Met-aminopeptidases that catalyze Met excision show no activity towards larger amino acids like Gln or Asn (Varshavsky,2011). It is important to note that the ELM prediction tool will only return internal N-degrons if the sequence of the cleavage product is entered for analysis.
Once the tertiary destabilizing Asn or Gln residue is exposed at the N-terminus, it is targeted by aminohydrolases for deamidation to generate the secondary destabilizing amino acids Asp and Glu, respectively. In S. cerevisiae deamidation is catalyzed by Nta1, which recognizes both Asn and Gln, while in Mammals Ntan1 and Ntaq1 specifically deamidate Asn and Gln, respectively. For Ntaq1 substrates, any amino acid except Pro can be accommodated adjacent to Gln (Grigoryev,1996; Wang,2009). After deamidation, Asp or Glu is arginylated by ATE1-encoded arginyl transferases (R-transferases). In Mammals, six isoforms of R-transferase have been detected, differing in cellular location, tissue distribution and activity (Tasaki,2007). Conjugation of the primary destabilizing Arg creates a functional N-degron that is recognized by the UBR-box of N-recognins. The UBR-box is a highly conserved region whose tertiary structure is stabilized by two zinc fingers, which form a negatively charged binding pocket that rigidly binds the positively charged N-terminal amino acid. In addition, the UBR-box forms electrostatic interactions and hydrogen bonds with the free alpha amino group, the side chain of the acidic residue in the second position and the backbone of the first three residues (Choi,2010; Tasaki,2012) (3NIK; 3NIL).
Pattern: ^M{0,1}([NQ]).
Pattern Probability: 0.0001645
Present in taxon: Eukaryota
Interaction Domain:
zf-UBR (PF02207) Putative zinc finger in N-recognin (UBR box) (Stochiometry: 1 : 1)
The half-life of proteins, which can vary from a few seconds to several days and even years (Varshavsky,2011), is determined by regulated proteolytic degradation. A degradation system common to Eukaryotes is the ubiquitin proteasome system (UPS). Proteins exhibiting degradation signals are recognized and polyubiquitylated by ubiquitin ligases, leading to their subsequent proteasomal degradation. A subset of these degradation signals can be found at the N-terminus of proteins or at the neo-N-terminus of protein cleavage products. These N-terminal motifs, called N-degrons, are recognized by E3 ubiquitin ligases known as N-recognins, which mark their substrates for proteasomal degradation by polyubiquitylation of Lys residues (Bachmair,1986). Studies suggest that this highly conserved N-end rule pathway is the most frequent way of controlled protein degradation, being involved in regulation of G-protein signalling, control of peptide import, regulation of apoptosis, fidelity of chromosome segregation and maintenance of amino acid pools during starvation of cells (Hu,2005).
Currently, 12 destabilizing N-terminal residues are known and classified into two groups of N-degrons according to their physicochemical properties. Type I destabilizing residues comprise positively charged Arg and Lys whereas type II residues are amino acids with large hydrophobic side chains including Tyr, Trp, Phe, Leu and Ile (Tasaki,2012). These primary destabilizing residues are directly recognized by N-recognins. In addition, the N-end rule pathway also contains secondary and tertiary destabilizing amino acids, which are destabilizing due to their ability of being conjugated to a primary destabilizing residue. Glu and Asp are secondary destabilizing residues as they can be conjugated to Arg by ATE1-encoded arginyl transferases (R-transferases) (Kwon,1999). These R-transferases are specific for Glu and Asp but cannot arginylate Asn and Gln. Before being arginylated, the tertiary destabilizing residues Asn and Gln are first deamidated by N-terminal amidohydrolases to create the secondary destabilizing residues Asp and Glu. In addition, Cys was also found to function as a tertiary destabilizing residue in higher Eukaryotes but not in Fungi. In the presence of oxygen and nitric oxide, N-terminal Cys gets oxidized to sulfinic (CysO2(H)) or sulfonic (CysO3(H)) acid. As structural mimics of Asp, these can be recognized and arginylated by R-transferases. Due to the requirement of cellular oxygen and nitric oxide, this subset of N-end rule pathway substrates is thought to mediate oxygen sensing in both Mammalia and Viridiplantae systems (Hu,2005; Licausi,2011).
N-degrons can be generated either by excision of the N-terminal Met or by internal proteolytic cleavage, which is carried out by proteases such as separases and caspases (Varshavsky,2011; Tasaki,2007). Met excision is catalyzed by N-terminal methionine aminopeptidases. Cleavage by these peptidases requires a small residue in the scissile bond C-terminal position. Among the known destabilizing amino acids, only Cys fulfills this requirement, suggesting that most N-degrons are created by internal cleavage (Hu,2005). Once an N-degron is generated, the motif is bound by N-recognins, which initiate the degradation process. N-recognins, also referred to as UBR proteins, are members of the E3 ubiquitin ligase family. The yeast S. cerevisiae expresses one known UBR protein (Ubr1), whereas mammalian genomes encode at least 7 UBR proteins. In plants, PRT1 (Stary,2003) and PRT6 (Garzon,2007) have been identified as N-recognins (Graciet,2010). Canonical UBR proteins contain two motif-binding domains (Tasaki,2009). The UBR-box is composed of two zinc fingers forming a negatively charged binding pocket that specifically interacts with primary type I destabilizing residues (3NY3). The N-box recognizes Type II destabilizing residues via hydrophobic interactions (Tasaki,2012; Choi,2010). Additional domains found in N-recognins are the RING finger domain and the auto-inhibitory domain that catalyze and regulate protein ubiquitylation, respectively. Under physiological conditions UBR proteins build complexes with E2 conjugating enzymes, like the human HR6A and HR6B proteins (Sriram,2011).
To date, only few physiological N-end rule substrates have been experimentally characterized, most of which are endoproteolytic protein cleavage products. They can be categorized into 5 different classes according to their destabilizing residue. DEG_Nend_UBRbox_1 contains type I primary destabilizing residues whereas DEG_Nend_UBRbox_2 comprises the secondary destabilizing residues Glu and Asp. N-degrons depending on tertiary destabilizing residues are described in DEG_Nend_UBRbox_3 (Asn or Gln) and DEG_Nend_UBRbox_4 (Cys), the latter of which is not functional in Fungi. N-degrons containing type II destabilizing residues are captured in DEG_Nend_Nbox_1.
o 6 selected references:


o 4 GO-Terms:
Biological Process:
Protein Polyubiquitination (also annotated in these classes: DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_4 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 )
Ubiquitin-Dependent Protein Catabolic Process Via The N-End Rule Pathway (also annotated in these classes: DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_4 )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Molecular Function:
Ubiquitin-Protein Ligase Activity (also annotated in these classes: DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_4 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 )


o No Instance for DEG_Nend_UBRbox_3
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /