ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

DOC_RSK_DDVF_1

Accession:
Functional site class:
Docking motif binding to N-terminal kinase domain of RSK family kinases
Functional site description:
The 90 kDa ribosomal S6 kinases (RSK) are downstream effectors of the Ras–extracellular signal-regulated kinase (ERK) and mitogen-activated protein kinase (MAPK) signaling cascade and regulate diverse cellular processes. In addition, activated RSK phosphorylates important translational regulators such as EIF4B, RPS6, and EIF4B. The DDVF peptide sequence was identified as an RSK N-terminal kinase domain (NTKD) binding motif that enables the phosphorylation of RSK substrates.
ELM Description:
The short, partly acidic [DE]-[DE]-V-F motif was first identified in the L protein of Theiler’s murine encephalomyelitis virus (TMEV). It is highly conserved and so far has been identified in a few viral and bacterial pathogens, e.g., ORF45 protein of Kaposi’s sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia. Asp/Glu from +1 and +2 motif positions interact via H-bonds on the positively charged surface (encircled by Arg300, Lys304, Arg305, Asn306 and Lys284) around the deep hydrophobic pocket which is formed between the αG-αH loop and helix G on the RSK kinase domain. Both, +3 Val and +4 Phe are deeply buried in the hydrophobic pocket. Additional H-bond contacts are also observed from the main chain carbonyl atom of +1 Asp/Glu and +3 Val. In ORF45, the backbone carbonyl atom of the latter is engaged in β-augmentation with the kinase domain. An extra backbone contact stabilizing the β-augmentation is provided by the N-atom from the amino acid following +4 Phe. Further, the -1 position has a Proline residue, which provides the kink to the motif peptide for the interaction with the surface and the pocket afterward (7OPO). Mutation of the residues (F268S, L285A, L285W, M287W, R305F) involved in binding pocket formation on the kinase domain leads to ~100-1000-fold reduction in the binding affinity with the ORF45 motif. The KAKLGM motif is conserved across evolution in all RSK isoforms (RKS1-4) and is part of a surface-exposed loop at the base of an α-helix in the N-terminal kinase domain (NTKD). When the pathogens bind to this loop, it may indirectly stabilize the neighbouring kinase activation loop in an active conformation. This suggests that the physiological regulation of RSK may depend on cellular factors that interact with the kinase in a similar way.
Pattern: [DE][DE]VF
Pattern Probability: 0.0000161
Present in taxons: Bacteria Eukaryota Viruses
Interaction Domain:
Protein kinase domain (IPR000719) Protein phosphorylation, which plays a key role in most cellular activities, is a reversible process mediated by protein kinases and phosphoprotein phosphatases (Stochiometry: 1 : 1)
o See 5 Instances for DOC_RSK_DDVF_1
The 90 kDa ribosomal S6 kinases (RSK) are highly conserved Ser/Thr kinases, which are downstream effectors of the Ras–extracellular signal-regulated kinase (ERK) and mitogen-activated protein kinase (MAPK) signaling cascade. Unusually, RSKs have two protein kinase phosphorylation domains. The human RSK family consists of four isoforms (RSK1–4) and regulates diverse cellular processes, such as cell growth, cell survival, and proliferation. In addition, the members of the RSK family phosphorylate translational regulators, including the eukaryotic initiation factor 4B (EIF4B, P23588), the 40S ribosomal protein S6 (RPS6, P62753), and the tumor suppressors Tuberin (TSC2, P49815) and Programmed cell death protein 4 (PDCD4, Q53EL6). There are accumulating data that SLiMs in pathogenic organisms often evolve to mimic and subvert functional host protein interfaces. Proteins from several unrelated viruses and bacteria, including the Theiler’s murine encephalomyelitis virus (TMEV) leader (L) protein, the PRF45 (Human herpesvirus 8), and the YopM of bacteria from the genus Yersinia, can recruit the cellular p90-ribosomal protein S6 kinases (RSKs) through a conserved DDVF motif located in an IDD region. The consequence of the protein-protein interactions is to maintain the RSK kinases in an active state and influence the phosphorylation of RSK downstream substrates (Sorgeloos,2022).
The molecular details of the interaction of the DDVF motif with the N-terminal kinase domain (NTKD) are more complex than is typical for Linear Motifs which mostly bind ordered surface pockets of the core folded domain. TMEV Leader Protein (L) (P13899), ORF45 (F5HDE4), and YopM (P17778) bind a conserved but surface-located loop located on the RSK N-terminal kinase domains, KAKLGM, as shown by cross-linking experiments, as well as crystallographic data of the RSK2 NTKD in complex with ORF45 (7OPO; Alexa,2022). While Val and Phe from ORF45 DDVF are deeply buried, the backbone atom of the following amino acid (after the Phe) and the Val from motif makes contact with the NTKD via β-augmentation. Interestingly, the β-strand which engages from the NTKD also forms additional contacts with the IDD region containing DDVF which is wrapped around the bulge on the kinase surface (formed by the mentioned β-strand on the NTKD). The long IDD region also helps dimerization of the kinase as it interacts with the N-terminal region of one RSK copy and C-terminus part of another RSK molecule (7OPO; Alexa,2022).
The L proteins from different TMEV virus strains (P08544 and P08545) have high sequence similarity to the canonical TMEV (P13899), and are likely to interact in a similar manner to the conserved loop of RSKs. The RSK KAKLGM motif is conserved in the N-terminal kinase domain (NTKD) of all human RSK isoforms and regulates RSK activity, likely acting as an allosteric regulation site.
The downstream consequences are various, e.g., YopM inhibits effector-triggered pyrin inflammasome activation (Ratner,2016), whereas, upon RSK recruitment and accumulation of c-Fos, ORF45 accelerates lytic replication of Kaposi's Sarcoma-Associated Herpesvirus (Li,2015). The RSK recruitment by cardiovirus L protein leads to the inhibition of the antiviral eukaryotic initiation factor 2 alpha kinase 2 (EIF2AK2) (Borghese,2019).
o 5 selected references:


o 7 GO-Terms:
Biological Process:
Activation Of Protein Kinase Activity (also annotated in these classes: DOC_GSK3_Axin_1 LIG_FZD_DVL_PDZ )
Perturbation Of Host Innate Immune Response (also annotated in class: )
Regulation Of Translation In Response To Stress (also annotated in class: )
Regulation Of Translation (also annotated in these classes: LIG_CNOT1_NIM_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_G3BP_FGDF_1 )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Molecular Function:
Protein Binding (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CKS1_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_SPAK_OSR1_1 DOC_WD40_RPTOR_TOS_1 LIG_14-3-3_ChREBP_3 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CNOT1_NIM_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_FHA_1 LIG_FHA_2 LIG_FXI_DFP_1 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_IBAR_NPY_1 LIG_Integrin_isoDGR_2 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LEDGF_IBM_1 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LRP6_Inhibitor_1 LIG_LSD1_SNAG_1 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_SIV_4 LIG_LYPXL_yS_3 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_3 LIG_Nrd1CID_NIM_1 LIG_NRP_CendR_1 LIG_OCRL_FandH_1 LIG_PALB2_WD40_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex3_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RBL1_LxSxE_2 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RuBisCO_WRxxL_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 LIG_SPRY_1 LIG_SUFU_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_Trf4_IWRxY_1 LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Ribosomal Protein S6 Kinase Activity (also annotated in class: )


Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /