Posts

Showing posts with the label ASIC
Why Reset? A Reset is required to initialize a hardware design for system operation and to force an ASIC into a known state for simulation. A reset simply changes the state of the device/design/ASIC to a user/designer defined state. There are two types of reset, what are they? As you can guess them, they are Synchronous reset and Asynchronous reset. Synchronous Reset A synchronous reset signal will only affect or reset the state of the flip-flop on the active edge of the clock. The reset signal is applied as is any other input to the state machine. Advantages: The advantage to this type of topology is that the reset presented to all functional flip-flops is fully synchronous to the clock and will always meet the reset recovery time. Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be ...
48 comments
(追記) (追記ここまで)
Definitions FPGA : A Field-Programmable Gate Array (FPGA) is a semiconductor device containing programmable logic components called "logic blocks", and programmable interconnects. Logic blocks can be programmed to perform the function of basic logic gates such as AND, and XOR, or more complex combinational functions such as decoders or mathematical functions. For complete details click here . ASIC : An application-specific integrated circuit (ASIC) is an integrated circuit designed for a particular use, rather than intended for general-purpose use. Processors, RAM, ROM, etc are examples of ASICs. FPGA vs ASIC Speed ASIC rules out FPGA in terms of speed. As ASIC are designed for a specific application they can be optimized to maximum, hence we can have high speed in ASIC designs. ASIC can have hight speed clocks. Cost FPGAs are cost effective for small applications. But when it comes to complex and large volume designs (like 32-bit processors) ASIC products are cheaper. Size/A...
2 comments
(追記) (追記ここまで)