VLSI Interview Questions - 5

This sections contains interview questions related to LOW POWER VLSI DESIGN.

1. What are the important aspects of VLSI optimization?


Power, Area, and Speed.

2. What are the sources of power dissipation?


+ Dynamic power consumption, due to logic transitions causing logic gates to charge/discharge load capacitance.
+ Short-circuit current, this occurs when p-tree and n-tree shorted (for a while) during logic transition.
+ Leakage current, this is a very important source of power dissipation in nano technology, it increases with decrease in lambda value. It is caused due to diode leakages around transistors and n-wells.

3. What is the need for power reduction?


Low power increases noise immunity, increases batter life, decreases cooling and packaging costs.

4. Give some low power design techniques.


Voltage scaling, transistor resizing, pipelining and parallelism, power management modes like standby modes, etc.

5. Give a disadvantage of voltage scaling technique for power reduction.


When voltage is scaled, designers tend to decrease threshold voltage to maintain good noise margins. But decreasing threshold voltages increases leakage currents exponentially.

6. Give an expression for switching power dissipation.


Pswitching = (1/2)CVdd2f
Where
Pswitching = Switching power.
C = Load capacitance.
Vdd = Supply voltage.
f = Operating frequency.

7. Will glitches in a logic circuit cause power wastage?


Yes, because they cause unexpected transitions in logic gates.

8. What is the major source of power wastage in SRAM?


To read/write a word data, activates a word line for a row which causes all the columns in the row to be active even though we need only a word data. This consumes a lot power.

9. What is the major problem associated with caches w.r.t low power design? Give techniques to overcome it.


Cache is a very important part of the integrated chips, they occupy most of the space and hence contain lot of transistors. More transistors means more leakage current. That is the major problem associated with caches w.r.t. low power design. The following techniques are used to overcome it: Vdd-Gating, Cache decay, Drowsy caches, etc.

10. Does software play any role in low power design?


Yes, one can redesign a software to reduce power consumptions. For example modify the process algorithm which uses less number of computations.

Comments

(追記) (追記ここまで)

Popular posts from this blog

1. How do you convert a XOR gate into a buffer and a inverter (Use only one XOR gate for each)? Answer 2. Implement an 2-input AND gate using a 2x1 mux. Answer 3. What is a multiplexer? Answer A multiplexer is a combinational circuit which selects one of many input signals and directs to the only output. 4. What is a ring counter? Answer A ring counter is a type of counter composed of a circular shift register. The output of the last shift register is fed to the input of the first register. For example, in a 4-register counter, with initial register values of 1100, the repeating pattern is: 1100, 0110, 0011, 1001, 1100, so on. 5. Compare and Contrast Synchronous and Asynchronous reset. Answer Synchronous reset logic will synthesize to smaller flip-flops, particularly if the reset is gated with the logic generating the d-input. But in such a case, the combinational logic gate count grows, so the overall gate count savings may not be that significant. The clock works as a filter for sma...
225 comments
Designing a FSM is the most common and challenging task for every digital logic designer. One of the key factors for optimizing a FSM design is the choice of state coding, which influences the complexity of the logic functions, the hardware costs of the circuits, timing issues, power usage, etc. There are several options like binary encoding, gray encoding, one-hot encoding, etc. The choice of the designer depends on the factors like technology, design specifications, etc. One-hot encoding In one-hot encoding only one bit of the state vector is asserted for any given state. All other state bits are zero. Thus if there are n states then n state flip-flops are required. As only one bit remains logic high and rest are logic low, it is called as One-hot encoding. Example : If there is a FSM, which has 5 states. Then 5 flip-flops are required to implement the FSM using one-hot encoding. The states will have the following values: S0 - 10000 S1 - 01000 S2 - 00100 S3 - 00010 S4 - 00001 Adv...
3 comments
Cross Module Reference   Cross Module Reference abbreviated as XMR is a very useful concept in Verilog HDL (as well as system Verilog). However it seems to be less known among many users of Verilog. XMR is a mechanism built into Verilog to globally reference (i.e., across the modules) to any nets, tasks, functions etc. Using XMR, one can refer to any object of a module in any other module, irrespective of whether they are present below or above its hierarchy. Hence, a XMR can be a:   Downward reference OR Upward reference   Consider the following hierarchy:     Module A   Net x   Instance P of Module B     Net x   Instance M of Module D   Net x   Instance Q of Module C   Net x   Instance N of Module E    Net x   Instance R of Module B   Net x   Instance M of Module D   Net x ...
10 comments