ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

LIG_Nrd1CID_NIM_1

Accession:
Functional site class:
Nrd1 CID domain ligand
Functional site description:
Noncoding RNAs are targeted by the Nrd1-Nab3-Sen1 (NNS) complex for exosome-dependent degradation. Within the NNS complex Sen1 employs three Nrd1-interacting motifs (NIMs) to bind to the CTD-interacting domain (CID) of Nrd1. The Trf4-Air2-Mtr4 (TRAMP) complex recognizes and polyadenylates the RNAs targeted by the NNS complex for degradation or processing in the exosome. It is formed by a poly(A) polymerase, Trf4 or Trf5, an RNA helicase Mtr4, and an RNA-binding zinc knuckle protein, Air1/2. The Trf4 subunit similarly binds to the CID of Nrd1 by a NIM and thereby stimulates the polyadenylation activity of the TRAMP complex. Besides Trf4, another nuclear exosome cofactor, Mpp6 also interacts with Nrd1 CID through a NIM in a competitive manner.
ELM Description:
Based on the known NIM instances, their conservation and structural considerations, NIMs are centred around a strictly conserved Tyr residue that is preceded by some negative charges, especially in the Y-2 position where only Asp, or occasionally Asn, is accepted. The Y-1 position also seems to be restricted to acidic and small residues, while the Y+2 position can only take Pro or Leu (according to mutational studies Ala and Val also (Zhang,2019), but those are not seen in alignments).

Similar to the CTD, the residues in the Y+1 to Y+4 positions of NIMs form a β turn when binding to Nrd1 CID. The conserved Y and P/L residues dock into a hydrophobic pocket of CID. The Y also interacts with the P in the Y+2 position via intramolecular stacking and forms an H-bond with the conserved D70 of Nrd1. There are a variable number of acidic residues in the six positions preceding the Y, which bind to a basic patch of CID.

Based on the sequences and binding affinities of the instances, it seems that those with Pro in the Y+2 position and/or more acidic residues N-terminal to the Y bind stronger than others (Zhang,2019). Based on the structures of the 3 Sen1 NIMs (6O3W; 6O3X; 6O3Y), accommodating the bulkier Leu at the Y+2 position slightly changes the backbone structure of the motif. In these structures, acidic positions upstream to Y-2 are disordered, contacts with CID were not seen (Zhang,2019). In the Trf4 NIM-Nrd1 CID NMR structure (2MOW), Asp residues in the Y-2 and Y-4 positions contact S25 and R28 of Nrd1, while Glu in the Y-3 and Asp in the Y-6 positions form salt bridges with K30 and K21 of Nrd1 CID, respectively.

Interestingly, the NIM motif is remarkably poorly conserved among yeast species compared to other SLiMs. The interaction might have appeared relatively recently in evolution, might be old but got lost in many yeast species, or, if the interaction is found in other species, the motif sequence might evolve very fast, even by the standards of linear motifs.
Pattern: [ED].{0,3}[DN][DEGPA]Y.[PL]..
Pattern Probability: 0.0000422
Present in taxon: Fungi
Interaction Domain:
CID domain (IPR006569) The C-terminal domain (CTD) of the large subunit of RNA polymerase II is a platform for mRNA processing factors and links gene transcription to mRNA capping, splicing and polyadenylation. CTD recognition is dependent on the phosphorylation state of the CTD itself, which varies during the course of transcription but has also been linked to the isomerization state of the CTD's proline residues. Several RNA-processing factors recognise the CTD by means of a conserved CTD-interacting domain (CID). Factors with CID domains include the serine/arginine-rich-like factors SCAF4 and SCAF8, Nrd1 (which is implicated in polyadenylation-independent RNA 3'-end formation) and Pcf11. Pcf11 is a conserved and essential subunit of the yeast cleavage factor 1A, which is required for 3'-RNA processing and transcription termination [, ]. The CID domain is a right-handed superhelix of eight alpha-helices forming a compact domain. The CID fold closely resembles that of VHS domains and is related to armadillo-repeat proteins, except for the two amino-terminal helices. Amino acid residues in the hydrophobic core of the domain are highly conserved across CID domains [, ]. (Stochiometry: 1 : 1)
o See 5 Instances for LIG_Nrd1CID_NIM_1
The Nrd1-Nab3-Sen1 (NNS) complex controls pervasive transcription and is essential for the generation of sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription by RNA polymerase II (RNAPII) of noncoding RNAs, essentially for incorrectly folded rRNA and tRNA, snRNAs, snoRNAs and CUTs (cryptic unstable transcripts) (Tudek,2014, Kadaba,2004, Houseley,2009). The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates noncoding RNAs and thus targets the transcripts for trimming or complete degradation by the nuclear exosome. The TRAMP complex is composed of a DexH-box RNA helicase Mtr4, a poly(A) polymerase (Trf4 or Trf5) and a zinc knuckle RNA-binding protein (Air1 or Air2) (Falk,2014). The poly(A) polymerase targets aberrant RNA by adding a 3’-end poly(A) tail. This mechanism is contrary to the role of canonical nuclear polyadenylation of mRNAs that stimulates mRNA stability, transport from the nucleus and translation. For instance, the eukaryotic canonical poly(A) polymerase I (PAP I) protects newly transcribed pre-mRNA by adding a poly(A) tail (Falk,2014, Schmidt,2013). Although Trf4 contains the nucleotidyl transferase motif, the polyadenylation activity is only observed in TRAMP complexes containing Air1/2, because Trf4 has no RNA-binding domain (Vanacova,2005). Additionally, the Air proteins modulate the interaction between Mtr4 and Trf4. Mtr4 is needed for the poly(A) polymerase activity and mediates the exosome activity in vitro (Schmidt,2013). The interaction of TRAMP with the NNS complex promotes RNA degradation by the exosome. As a result, the NNS complex has two mutually exclusive functions: one associated with termination of transcription and one associated with degradation of RNA (Tudek,2014).
In yeasts, Nrd1-interacting motif (NIM)-mediated competitive interactions of Sen1 (Q00416), the TRAMP complex subunit Trf4 (P53632) and Mpp6 (P53725) with Nrd1 CID domain largely determine the function of these complexes (Zhang,2019; Kim,2016; Chaves-Arquero,2023). Within the NNS complex Sen1 interacts with Nrd1 with high affinity through 3 copies of NIMs (Zhang,2019): this multivalent setting also suggests that they form phase-separated condensates by liquid-liquid phase separation (LLPS). The nuclear exosome cofactors Mpp6 and Trf4 can also bind to the Nrd1 CID in a mutually exclusive manner, bridging Nrd1 and/or Nrd1-terminated transcripts to the exosome (Kim,2016). NIMs are similar to phosphorylated repeats of the RNAP II CTD (2LO6), but the binding affinity of the individual NIM motif instances to the CID domain is ~100-fold stronger (Tudek,2014; Zhang,2019; Kim,2016).
o 8 selected references:


o 9 GO-Terms:
Biological Process:
Nuclear Rna Surveillance (also annotated in these classes: LIG_ARS2_EDGEI_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_Trf4_IWRxY_1 )
Rna Processing (also annotated in these classes: DOC_PP1_SILK_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_2 LIG_Rrp6Rrp47_Mtr4_1 MOD_PRMT_GGRGG_1 )
Rna Polyadenylation (also annotated in these classes: LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 )
Cellular Compartment:
Nucleolus (also annotated in these classes: DOC_CDC14_PxL_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_Trf4_IWRxY_1 MOD_CDC14_SPxK_1 MOD_Plk_2-3 )
Nucleoplasm (also annotated in these classes: DEG_SCF_TRCP1_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 LIG_PCNA_APIM_2 LIG_PCNA_TLS_4 LIG_RBL1_LxSxE_2 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert MOD_Plk_1 )
Tramp Complex (also annotated in these classes: LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_Rrp6Rrp47_Mtr4_1 LIG_Trf4_IWRxY_1 )
Nucleus (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa CLV_TASPASE1 DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_MDM2_SWIB_1 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DEG_SPOP_SBC_1 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_CYCLIN_yCln2_LP_2 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 DOC_USP7_MATH_1 DOC_USP7_MATH_2 DOC_USP7_UBL2_3 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ANK_PxLPxL_1 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CaM_1-14-15-16_REV_1 LIG_CaMK_CASK_1 LIG_CORNRBOX LIG_CSL_BTD_1 LIG_CtBP_PxDLS_1 LIG_CtBP_RRT_2 LIG_DCNL_PONY_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH1_1 LIG_FHA_1 LIG_FHA_2 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_HOMEOBOX LIG_HP1_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KEPE_1 LIG_KEPE_2 LIG_KEPE_3 LIG_LEDGF_IBM_1 LIG_LSD1_SNAG_1 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_1 LIG_MYND_2 LIG_MYND_3 LIG_NBox_RRM_1 LIG_NRBOX LIG_PALB2_WD40_1 LIG_PCNA_APIM_2 LIG_PCNA_PIPBox_1 LIG_PCNA_TLS_4 LIG_PCNA_yPIPBox_3 LIG_PTAP_UEV_1 LIG_RBL1_LxSxE_2 LIG_RB_LxCxE_1 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RRM_PRI_1 LIG_Rrp6Rrp47_Mtr4_1 LIG_Sin3_1 LIG_Sin3_2 LIG_Sin3_3 LIG_SUFU_1 LIG_SUMO_SIM_anti_2 LIG_SUMO_SIM_par_1 LIG_TPR LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_UBA3_1 LIG_ULM_U2AF65_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WRPW_1 LIG_WRPW_2 LIG_WW_2 MOD_AAK1BIKe_LxxQxTG_1 MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_NEK2_1 MOD_NEK2_2 MOD_PIKK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SUMO_for_1 MOD_SUMO_rev_2 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Molecular Function:
Polynucleotide Adenylyltransferase Activity (also annotated in class: )
Protein Binding (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CKS1_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_WD40_RPTOR_TOS_1 LIG_14-3-3_ChREBP_3 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CNOT1_NIM_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_FHA_1 LIG_FHA_2 LIG_FXI_DFP_1 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_IBAR_NPY_1 LIG_Integrin_isoDGR_2 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LEDGF_IBM_1 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LRP6_Inhibitor_1 LIG_LSD1_SNAG_1 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_SIV_4 LIG_LYPXL_yS_3 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_3 LIG_NRP_CendR_1 LIG_OCRL_FandH_1 LIG_PALB2_WD40_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex3_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RBL1_LxSxE_2 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RuBisCO_WRxxL_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 LIG_SPRY_1 LIG_SUFU_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_Trf4_IWRxY_1 LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )


Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /