Jump to content
Wikipedia The Free Encyclopedia

State-transition matrix

From Wikipedia, the free encyclopedia
Describes state evolution of a linear system
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (December 2018) (Learn how and when to remove this message)

In control theory and dynamical systems theory, the state-transition matrix is a matrix function that describes how the state of a linear system changes over time. Essentially, if the system's state is known at an initial time t 0 {\displaystyle t_{0}} {\displaystyle t_{0}}, the state-transition matrix allows for the calculation of the state at any future time t {\displaystyle t} {\displaystyle t}.

The matrix is used to find the general solution to the homogeneous linear differential equation x ˙ ( t ) = A ( t ) x ( t ) {\displaystyle {\dot {\mathbf {x} }}(t)=\mathbf {A} (t)\mathbf {x} (t)} {\displaystyle {\dot {\mathbf {x} }}(t)=\mathbf {A} (t)\mathbf {x} (t)} and is also a key component in finding the full solution for the non-homogeneous (input-driven) case.

For linear time-invariant (LTI) systems, where the matrix A {\displaystyle \mathbf {A} } {\displaystyle \mathbf {A} } is constant, the state-transition matrix is the matrix exponential e A ( t t 0 ) {\displaystyle e^{\mathbf {A} (t-t_{0})}} {\displaystyle e^{\mathbf {A} (t-t_{0})}}. In the more complex time-variant case, where A ( t ) {\displaystyle \mathbf {A} (t)} {\displaystyle \mathbf {A} (t)} can change over time, there is no simple formula, and the matrix is typically found by calculating the Peano–Baker series.

Linear systems solutions

[edit ]

The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form

x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) u ( t ) , x ( t 0 ) = x 0 {\displaystyle {\dot {\mathbf {x} }}(t)=\mathbf {A} (t)\mathbf {x} (t)+\mathbf {B} (t)\mathbf {u} (t),\;\mathbf {x} (t_{0})=\mathbf {x} _{0}} {\displaystyle {\dot {\mathbf {x} }}(t)=\mathbf {A} (t)\mathbf {x} (t)+\mathbf {B} (t)\mathbf {u} (t),\;\mathbf {x} (t_{0})=\mathbf {x} _{0}},

where x ( t ) {\displaystyle \mathbf {x} (t)} {\displaystyle \mathbf {x} (t)} are the states of the system, u ( t ) {\displaystyle \mathbf {u} (t)} {\displaystyle \mathbf {u} (t)} is the input signal, A ( t ) {\displaystyle \mathbf {A} (t)} {\displaystyle \mathbf {A} (t)} and B ( t ) {\displaystyle \mathbf {B} (t)} {\displaystyle \mathbf {B} (t)} are matrix functions, and x 0 {\displaystyle \mathbf {x} _{0}} {\displaystyle \mathbf {x} _{0}} is the initial condition at t 0 {\displaystyle t_{0}} {\displaystyle t_{0}}. Using the state-transition matrix Φ ( t , τ ) {\displaystyle \mathbf {\Phi } (t,\tau )} {\displaystyle \mathbf {\Phi } (t,\tau )}, the solution is given by:[1] [2]

x ( t ) = Φ ( t , t 0 ) x ( t 0 ) + t 0 t Φ ( t , τ ) B ( τ ) u ( τ ) d τ {\displaystyle \mathbf {x} (t)=\mathbf {\Phi } (t,t_{0})\mathbf {x} (t_{0})+\int _{t_{0}}^{t}\mathbf {\Phi } (t,\tau )\mathbf {B} (\tau )\mathbf {u} (\tau )d\tau } {\displaystyle \mathbf {x} (t)=\mathbf {\Phi } (t,t_{0})\mathbf {x} (t_{0})+\int _{t_{0}}^{t}\mathbf {\Phi } (t,\tau )\mathbf {B} (\tau )\mathbf {u} (\tau )d\tau }

The first term is known as the zero-input response and represents how the system's state would evolve in the absence of any input. The second term is known as the zero-state response and defines how the inputs impact the system.

Peano–Baker series

[edit ]

The most general transition matrix is given by a product integral, referred to as the Peano–Baker series

Φ ( t , τ ) = I + τ t A ( σ 1 ) d σ 1 + τ t A ( σ 1 ) τ σ 1 A ( σ 2 ) d σ 2 d σ 1 + τ t A ( σ 1 ) τ σ 1 A ( σ 2 ) τ σ 2 A ( σ 3 ) d σ 3 d σ 2 d σ 1 + {\displaystyle {\begin{aligned}\mathbf {\Phi } (t,\tau )=\mathbf {I} &+\int _{\tau }^{t}\mathbf {A} (\sigma _{1}),円d\sigma _{1}\\&+\int _{\tau }^{t}\mathbf {A} (\sigma _{1})\int _{\tau }^{\sigma _{1}}\mathbf {A} (\sigma _{2}),円d\sigma _{2},円d\sigma _{1}\\&+\int _{\tau }^{t}\mathbf {A} (\sigma _{1})\int _{\tau }^{\sigma _{1}}\mathbf {A} (\sigma _{2})\int _{\tau }^{\sigma _{2}}\mathbf {A} (\sigma _{3}),円d\sigma _{3},円d\sigma _{2},円d\sigma _{1}\\&+\cdots \end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {\Phi } (t,\tau )=\mathbf {I} &+\int _{\tau }^{t}\mathbf {A} (\sigma _{1}),円d\sigma _{1}\\&+\int _{\tau }^{t}\mathbf {A} (\sigma _{1})\int _{\tau }^{\sigma _{1}}\mathbf {A} (\sigma _{2}),円d\sigma _{2},円d\sigma _{1}\\&+\int _{\tau }^{t}\mathbf {A} (\sigma _{1})\int _{\tau }^{\sigma _{1}}\mathbf {A} (\sigma _{2})\int _{\tau }^{\sigma _{2}}\mathbf {A} (\sigma _{3}),円d\sigma _{3},円d\sigma _{2},円d\sigma _{1}\\&+\cdots \end{aligned}}}

where I {\displaystyle \mathbf {I} } {\displaystyle \mathbf {I} } is the identity matrix. This matrix converges uniformly and absolutely to a solution that exists and is unique.[2] The series has a formal sum that can be written as

Φ ( t , τ ) = exp T τ t A ( σ ) d σ {\displaystyle \mathbf {\Phi } (t,\tau )=\exp {\mathcal {T}}\int _{\tau }^{t}\mathbf {A} (\sigma ),円d\sigma } {\displaystyle \mathbf {\Phi } (t,\tau )=\exp {\mathcal {T}}\int _{\tau }^{t}\mathbf {A} (\sigma ),円d\sigma }

where T {\displaystyle {\mathcal {T}}} {\displaystyle {\mathcal {T}}} is the time-ordering operator, used to ensure that the repeated product integral is in proper order. The Magnus expansion provides a means for evaluating this product.

Other properties

[edit ]

The state transition matrix Φ {\displaystyle \mathbf {\Phi } } {\displaystyle \mathbf {\Phi } } satisfies the following relationships. These relationships are generic to the product integral.

  1. It is continuous and has continuous derivatives.
  2. It is never singular; in fact Φ 1 ( t , τ ) = Φ ( τ , t ) {\displaystyle \mathbf {\Phi } ^{-1}(t,\tau )=\mathbf {\Phi } (\tau ,t)} {\displaystyle \mathbf {\Phi } ^{-1}(t,\tau )=\mathbf {\Phi } (\tau ,t)} and Φ 1 ( t , τ ) Φ ( t , τ ) = I {\displaystyle \mathbf {\Phi } ^{-1}(t,\tau )\mathbf {\Phi } (t,\tau )=\mathbf {I} } {\displaystyle \mathbf {\Phi } ^{-1}(t,\tau )\mathbf {\Phi } (t,\tau )=\mathbf {I} }, where I {\displaystyle \mathbf {I} } {\displaystyle \mathbf {I} } is the identity matrix.
  3. Φ ( t , t ) = I {\displaystyle \mathbf {\Phi } (t,t)=\mathbf {I} } {\displaystyle \mathbf {\Phi } (t,t)=\mathbf {I} } for all t {\displaystyle t} {\displaystyle t} .[3]
  4. Φ ( t 2 , t 1 ) Φ ( t 1 , t 0 ) = Φ ( t 2 , t 0 ) {\displaystyle \mathbf {\Phi } (t_{2},t_{1})\mathbf {\Phi } (t_{1},t_{0})=\mathbf {\Phi } (t_{2},t_{0})} {\displaystyle \mathbf {\Phi } (t_{2},t_{1})\mathbf {\Phi } (t_{1},t_{0})=\mathbf {\Phi } (t_{2},t_{0})} for all t 0 t 1 t 2 {\displaystyle t_{0}\leq t_{1}\leq t_{2}} {\displaystyle t_{0}\leq t_{1}\leq t_{2}}.
  5. It satisfies the differential equation Φ ( t , t 0 ) t = A ( t ) Φ ( t , t 0 ) {\displaystyle {\frac {\partial \mathbf {\Phi } (t,t_{0})}{\partial t}}=\mathbf {A} (t)\mathbf {\Phi } (t,t_{0})} {\displaystyle {\frac {\partial \mathbf {\Phi } (t,t_{0})}{\partial t}}=\mathbf {A} (t)\mathbf {\Phi } (t,t_{0})} with initial conditions Φ ( t 0 , t 0 ) = I {\displaystyle \mathbf {\Phi } (t_{0},t_{0})=\mathbf {I} } {\displaystyle \mathbf {\Phi } (t_{0},t_{0})=\mathbf {I} }.
  6. The state-transition matrix Φ ( t , τ ) {\displaystyle \mathbf {\Phi } (t,\tau )} {\displaystyle \mathbf {\Phi } (t,\tau )}, given by Φ ( t , τ ) U ( t ) U 1 ( τ ) {\displaystyle \mathbf {\Phi } (t,\tau )\equiv \mathbf {U} (t)\mathbf {U} ^{-1}(\tau )} {\displaystyle \mathbf {\Phi } (t,\tau )\equiv \mathbf {U} (t)\mathbf {U} ^{-1}(\tau )} where the n × n {\displaystyle n\times n} {\displaystyle n\times n} matrix U ( t ) {\displaystyle \mathbf {U} (t)} {\displaystyle \mathbf {U} (t)} is the fundamental solution matrix that satisfies U ˙ ( t ) = A ( t ) U ( t ) {\displaystyle {\dot {\mathbf {U} }}(t)=\mathbf {A} (t)\mathbf {U} (t)} {\displaystyle {\dot {\mathbf {U} }}(t)=\mathbf {A} (t)\mathbf {U} (t)} with initial condition U ( t 0 ) = I {\displaystyle \mathbf {U} (t_{0})=\mathbf {I} } {\displaystyle \mathbf {U} (t_{0})=\mathbf {I} }.
  7. Given the state x ( τ ) {\displaystyle \mathbf {x} (\tau )} {\displaystyle \mathbf {x} (\tau )} at any time τ {\displaystyle \tau } {\displaystyle \tau }, the state at any other time t {\displaystyle t} {\displaystyle t} is given by the mapping x ( t ) = Φ ( t , τ ) x ( τ ) {\displaystyle \mathbf {x} (t)=\mathbf {\Phi } (t,\tau )\mathbf {x} (\tau )} {\displaystyle \mathbf {x} (t)=\mathbf {\Phi } (t,\tau )\mathbf {x} (\tau )}

Estimation of the state-transition matrix

[edit ]

In the time-invariant case, we can define Φ {\displaystyle \mathbf {\Phi } } {\displaystyle \mathbf {\Phi } }, using the matrix exponential, as Φ ( t , t 0 ) = e A ( t t 0 ) {\displaystyle \mathbf {\Phi } (t,t_{0})=e^{\mathbf {A} (t-t_{0})}} {\displaystyle \mathbf {\Phi } (t,t_{0})=e^{\mathbf {A} (t-t_{0})}}. [4]

In the time-variant case, the state-transition matrix Φ ( t , t 0 ) {\displaystyle \mathbf {\Phi } (t,t_{0})} {\displaystyle \mathbf {\Phi } (t,t_{0})} can be estimated from the solutions of the differential equation u ˙ ( t ) = A ( t ) u ( t ) {\displaystyle {\dot {\mathbf {u} }}(t)=\mathbf {A} (t)\mathbf {u} (t)} {\displaystyle {\dot {\mathbf {u} }}(t)=\mathbf {A} (t)\mathbf {u} (t)} with initial conditions u ( t 0 ) {\displaystyle \mathbf {u} (t_{0})} {\displaystyle \mathbf {u} (t_{0})} given by [ 1 ,   0 ,   ,   0 ] T {\displaystyle [1,\ 0,\ \ldots ,\ 0]^{\mathrm {T} }} {\displaystyle [1,\ 0,\ \ldots ,\ 0]^{\mathrm {T} }}, [ 0 ,   1 ,   ,   0 ] T {\displaystyle [0,\ 1,\ \ldots ,\ 0]^{\mathrm {T} }} {\displaystyle [0,\ 1,\ \ldots ,\ 0]^{\mathrm {T} }}, ..., [ 0 ,   0 ,   ,   1 ] T {\displaystyle [0,\ 0,\ \ldots ,\ 1]^{\mathrm {T} }} {\displaystyle [0,\ 0,\ \ldots ,\ 1]^{\mathrm {T} }}. The corresponding solutions provide the n {\displaystyle n} {\displaystyle n} columns of matrix Φ ( t , t 0 ) {\displaystyle \mathbf {\Phi } (t,t_{0})} {\displaystyle \mathbf {\Phi } (t,t_{0})}. Now, from property 4, Φ ( t , τ ) = Φ ( t , t 0 ) Φ ( τ , t 0 ) 1 {\displaystyle \mathbf {\Phi } (t,\tau )=\mathbf {\Phi } (t,t_{0})\mathbf {\Phi } (\tau ,t_{0})^{-1}} {\displaystyle \mathbf {\Phi } (t,\tau )=\mathbf {\Phi } (t,t_{0})\mathbf {\Phi } (\tau ,t_{0})^{-1}} for all t 0 τ t {\displaystyle t_{0}\leq \tau \leq t} {\displaystyle t_{0}\leq \tau \leq t}. The state-transition matrix must be determined before analysis on the time-varying solution can continue.

See also

[edit ]

References

[edit ]
  1. ^ Baake, Michael; Schlaegel, Ulrike (2011). "The Peano Baker Series". Proceedings of the Steklov Institute of Mathematics. 275: 155–159. doi:10.1134/S0081543811080098. S2CID 119133539.
  2. ^ a b Rugh, Wilson (1996). Linear System Theory. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-441205-2.
  3. ^ Brockett, Roger W. (1970). Finite Dimensional Linear Systems. John Wiley & Sons. ISBN 978-0-471-10585-5.
  4. ^ Reyneke, Pieter V. (2012). "Polynomial Filtering: To any degree on irregularly sampled data". Automatika. 53 (4): 382–397. doi:10.7305/automatika.53-4.248 . hdl:2263/21017 . S2CID 40282943.

Further reading

[edit ]
Wikibooks has a book on the topic of: Control Systems/Time Variant System Solutions
Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms

AltStyle によって変換されたページ (->オリジナル) /