Jump to content
Wikipedia The Free Encyclopedia

Moore matrix

From Wikipedia, the free encyclopedia
Concept in mathematics

In linear algebra, a Moore matrix, introduced by E. H. Moore (1896), is a matrix defined over a finite field. When it is a square matrix its determinant is called a Moore determinant (this is unrelated to the Moore determinant of a quaternionic Hermitian matrix). The Moore matrix has successive powers of the Frobenius automorphism applied to its columns (beginning with the zeroth power of the Frobenius automorphism in the first column), so it is an m ×ばつ n matrix M = [ α 1 α 1 q α 1 q n 1 α 2 α 2 q α 2 q n 1 α 3 α 3 q α 3 q n 1 α m α m q α m q n 1 ] {\displaystyle M={\begin{bmatrix}\alpha _{1}&\alpha _{1}^{q}&\dots &\alpha _{1}^{q^{n-1}}\\\alpha _{2}&\alpha _{2}^{q}&\dots &\alpha _{2}^{q^{n-1}}\\\alpha _{3}&\alpha _{3}^{q}&\dots &\alpha _{3}^{q^{n-1}}\\\vdots &\vdots &\ddots &\vdots \\\alpha _{m}&\alpha _{m}^{q}&\dots &\alpha _{m}^{q^{n-1}}\\\end{bmatrix}}} {\displaystyle M={\begin{bmatrix}\alpha _{1}&\alpha _{1}^{q}&\dots &\alpha _{1}^{q^{n-1}}\\\alpha _{2}&\alpha _{2}^{q}&\dots &\alpha _{2}^{q^{n-1}}\\\alpha _{3}&\alpha _{3}^{q}&\dots &\alpha _{3}^{q^{n-1}}\\\vdots &\vdots &\ddots &\vdots \\\alpha _{m}&\alpha _{m}^{q}&\dots &\alpha _{m}^{q^{n-1}}\\\end{bmatrix}}} or M i , j = α i q j 1 {\displaystyle M_{i,j}=\alpha _{i}^{q^{j-1}}} {\displaystyle M_{i,j}=\alpha _{i}^{q^{j-1}}} for all indices i and j. (Some authors use the transpose of the above matrix.)

The Moore determinant of a square Moore matrix (so m = n) can be expressed as:

det ( V ) = c ( c 1 α 1 + + c n α n ) , {\displaystyle \det(V)=\prod _{\mathbf {c} }\left(c_{1}\alpha _{1}+\cdots +c_{n}\alpha _{n}\right),} {\displaystyle \det(V)=\prod _{\mathbf {c} }\left(c_{1}\alpha _{1}+\cdots +c_{n}\alpha _{n}\right),}

where c runs over a complete set of direction vectors, made specific by having the last non-zero entry equal to 1, i.e.,

det ( V ) = 1 i n c 1 , , c i 1 ( c 1 α 1 + + c i 1 α i 1 + α i ) . {\displaystyle \det(V)=\prod _{1\leq i\leq n}\prod _{c_{1},\dots ,c_{i-1}}\left(c_{1}\alpha _{1}+\cdots +c_{i-1}\alpha _{i-1}+\alpha _{i}\right).} {\displaystyle \det(V)=\prod _{1\leq i\leq n}\prod _{c_{1},\dots ,c_{i-1}}\left(c_{1}\alpha _{1}+\cdots +c_{i-1}\alpha _{i-1}+\alpha _{i}\right).}

In particular the Moore determinant vanishes if and only if the elements in the left hand column are linearly dependent over the finite field of order q. So it is analogous to the Wronskian of several functions.

Dickson used the Moore determinant in finding the modular invariants of the general linear group over a finite field.

See also

[edit ]

References

[edit ]
Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms


Stub icon

This article about matrices is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /