Jump to content
Wikipedia The Free Encyclopedia

Shift matrix

From Wikipedia, the free encyclopedia

In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix U with ones on the superdiagonal is an upper shift matrix. The alternative subdiagonal matrix L is unsurprisingly known as a lower shift matrix. The (i, j)th component of U and L are

U i j = δ i + 1 , j , L i j = δ i , j + 1 , {\displaystyle U_{ij}=\delta _{i+1,j},\quad L_{ij}=\delta _{i,j+1},} {\displaystyle U_{ij}=\delta _{i+1,j},\quad L_{ij}=\delta _{i,j+1},}

where δ i j {\displaystyle \delta _{ij}} {\displaystyle \delta _{ij}} is the Kronecker delta symbol.

For example, the ×ばつ 5 shift matrices are

U 5 = ( 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ) L 5 = ( 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 ) . {\displaystyle U_{5}={\begin{pmatrix}0&1&0&0&0\0円&0&1&0&0\0円&0&0&1&0\0円&0&0&0&1\0円&0&0&0&0\end{pmatrix}}\quad L_{5}={\begin{pmatrix}0&0&0&0&0\1円&0&0&0&0\0円&1&0&0&0\0円&0&1&0&0\0円&0&0&1&0\end{pmatrix}}.} {\displaystyle U_{5}={\begin{pmatrix}0&1&0&0&0\0円&0&1&0&0\0円&0&0&1&0\0円&0&0&0&1\0円&0&0&0&0\end{pmatrix}}\quad L_{5}={\begin{pmatrix}0&0&0&0&0\1円&0&0&0&0\0円&1&0&0&0\0円&0&1&0&0\0円&0&0&1&0\end{pmatrix}}.}

Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.

As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in the last position.[1]

Premultiplying a matrix A by a lower shift matrix results in the elements of A being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left. Similar operations involving an upper shift matrix result in the opposite shift.

Clearly all finite-dimensional shift matrices are nilpotent; an n×ばつn shift matrix S becomes the zero matrix when raised to the power of its dimension n.

Shift matrices act on shift spaces. The infinite-dimensional shift matrices are particularly important for the study of ergodic systems. Important examples of infinite-dimensional shifts are the Bernoulli shift, which acts as a shift on Cantor space, and the Gauss map, which acts as a shift on the space of continued fractions (that is, on Baire space.)

Properties

[edit ]

Let L and U be the n×ばつn lower and upper shift matrices, respectively. The following properties hold for both U and L. Let us therefore only list the properties for U:

The following properties show how U and L are related:

  • LT = U; UT = L
  • The null spaces of U and L are
    N ( U ) = span { ( 1 , 0 , , 0 ) T } , {\displaystyle N(U)=\operatorname {span} \left\{(1,0,\ldots ,0)^{\mathsf {T}}\right\},} {\displaystyle N(U)=\operatorname {span} \left\{(1,0,\ldots ,0)^{\mathsf {T}}\right\},}
    N ( L ) = span { ( 0 , , 0 , 1 ) T } . {\displaystyle N(L)=\operatorname {span} \left\{(0,\ldots ,0,1)^{\mathsf {T}}\right\}.} {\displaystyle N(L)=\operatorname {span} \left\{(0,\ldots ,0,1)^{\mathsf {T}}\right\}.}
  • The spectrum of U and L is { 0 } {\displaystyle \{0\}} {\displaystyle \{0\}}. The algebraic multiplicity of 0 is n, and its geometric multiplicity is 1. From the expressions for the null spaces, it follows that (up to a scaling) the only eigenvector for U is ( 1 , 0 , , 0 ) T {\displaystyle (1,0,\ldots ,0)^{\mathsf {T}}} {\displaystyle (1,0,\ldots ,0)^{\mathsf {T}}}, and the only eigenvector for L is ( 0 , , 0 , 1 ) T {\displaystyle (0,\ldots ,0,1)^{\mathsf {T}}} {\displaystyle (0,\ldots ,0,1)^{\mathsf {T}}}.
  • For LU and UL we have
    U L = I diag ( 0 , , 0 , 1 ) , {\displaystyle UL=I-\operatorname {diag} (0,\ldots ,0,1),} {\displaystyle UL=I-\operatorname {diag} (0,\ldots ,0,1),}
    L U = I diag ( 1 , 0 , , 0 ) . {\displaystyle LU=I-\operatorname {diag} (1,0,\ldots ,0).} {\displaystyle LU=I-\operatorname {diag} (1,0,\ldots ,0).}
    These matrices are both idempotent, symmetric, and have the same rank as U and L
  • LnaUna + LaUa = UnaLna + UaLa = I (the identity matrix), for any integer a between 0 and n inclusive.

If N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form

( S 1 0 0 0 S 2 0 0 0 S r ) {\displaystyle {\begin{pmatrix}S_{1}&0&\ldots &0\0円&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \0円&0&\ldots &S_{r}\end{pmatrix}}} {\displaystyle {\begin{pmatrix}S_{1}&0&\ldots &0\0円&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \0円&0&\ldots &S_{r}\end{pmatrix}}}

where each of the blocks S1S2, ..., Sr is a shift matrix (possibly of different sizes).[2] [3]

Examples

[edit ]
S = ( 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 ) ; A = ( 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 ) . {\displaystyle S={\begin{pmatrix}0&0&0&0&0\1円&0&0&0&0\0円&1&0&0&0\0円&0&1&0&0\0円&0&0&1&0\end{pmatrix}};\quad A={\begin{pmatrix}1&1&1&1&1\1円&2&2&2&1\1円&2&3&2&1\1円&2&2&2&1\1円&1&1&1&1\end{pmatrix}}.} {\displaystyle S={\begin{pmatrix}0&0&0&0&0\1円&0&0&0&0\0円&1&0&0&0\0円&0&1&0&0\0円&0&0&1&0\end{pmatrix}};\quad A={\begin{pmatrix}1&1&1&1&1\1円&2&2&2&1\1円&2&3&2&1\1円&2&2&2&1\1円&1&1&1&1\end{pmatrix}}.}

Then,

S A = ( 0 0 0 0 0 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 ) ; A S = ( 1 1 1 1 0 2 2 2 1 0 2 3 2 1 0 2 2 2 1 0 1 1 1 1 0 ) . {\displaystyle SA={\begin{pmatrix}0&0&0&0&0\1円&1&1&1&1\1円&2&2&2&1\1円&2&3&2&1\1円&2&2&2&1\end{pmatrix}};\quad AS={\begin{pmatrix}1&1&1&1&0\2円&2&2&1&0\2円&3&2&1&0\2円&2&2&1&0\1円&1&1&1&0\end{pmatrix}}.} {\displaystyle SA={\begin{pmatrix}0&0&0&0&0\1円&1&1&1&1\1円&2&2&2&1\1円&2&3&2&1\1円&2&2&2&1\end{pmatrix}};\quad AS={\begin{pmatrix}1&1&1&1&0\2円&2&2&1&0\2円&3&2&1&0\2円&2&2&1&0\1円&1&1&1&0\end{pmatrix}}.}

Clearly there are many possible permutations. For example, S T A S {\displaystyle S^{\mathsf {T}}AS} {\displaystyle S^{\mathsf {T}}AS} is equal to the matrix A shifted up and left along the main diagonal.

S T A S = ( 2 2 2 1 0 2 3 2 1 0 2 2 2 1 0 1 1 1 1 0 0 0 0 0 0 ) . {\displaystyle S^{\mathsf {T}}AS={\begin{pmatrix}2&2&2&1&0\2円&3&2&1&0\2円&2&2&1&0\1円&1&1&1&0\0円&0&0&0&0\end{pmatrix}}.} {\displaystyle S^{\mathsf {T}}AS={\begin{pmatrix}2&2&2&1&0\2円&3&2&1&0\2円&2&2&1&0\1円&1&1&1&0\0円&0&0&0&0\end{pmatrix}}.}

See also

[edit ]

Notes

[edit ]

References

[edit ]
[edit ]
Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms

AltStyle によって変換されたページ (->オリジナル) /