Commutation matrix
In mathematics, especially in linear algebra and matrix theory, the commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form of its transpose. Specifically, the commutation matrix K(m,n) is the nm ×ばつ mn permutation matrix which, for any m ×ばつ n matrix A, transforms vec(A) into vec(AT):
- K(m,n) vec(A) = vec(AT) .
Here vec(A) is the mn ×ばつ 1 column vector obtain by stacking the columns of A on top of one another:
- {\displaystyle \operatorname {vec} (\mathbf {A} )=[\mathbf {A} _{1,1},\ldots ,\mathbf {A} _{m,1},\mathbf {A} _{1,2},\ldots ,\mathbf {A} _{m,2},\ldots ,\mathbf {A} _{1,n},\ldots ,\mathbf {A} _{m,n}]^{\mathrm {T} }}
where A = [Ai,j]. In other words, vec(A) is the vector obtained by vectorizing A in column-major order. Similarly, vec(AT) is the vector obtaining by vectorizing A in row-major order. The cycles and other properties of this permutation have been heavily studied for in-place matrix transposition algorithms.
In the context of quantum information theory, the commutation matrix is sometimes referred to as the swap matrix or swap operator [1]
Properties
[edit ]- The commutation matrix is a special type of permutation matrix, and is therefore orthogonal. In particular, K(m,n) is equal to {\displaystyle \mathbf {P} _{\pi }}, where {\displaystyle \pi } is the permutation over {\displaystyle \{1,\dots ,mn\}} for which
- {\displaystyle \pi (i+m(j-1))=j+n(i-1),\quad i=1,\dots ,m,\quad j=1,\dots ,n.}
- The determinant of K(m,n) is {\displaystyle (-1)^{{\frac {1}{4}}n(n-1)m(m-1)}}.
- Replacing A with AT in the definition of the commutation matrix shows that K(m,n) = (K(n,m))T. Therefore, in the special case of m = n the commutation matrix is an involution and symmetric.
- The main use of the commutation matrix, and the source of its name, is to commute the Kronecker product: for every m ×ばつ n matrix A and every r ×ばつ q matrix B,
- {\displaystyle \mathbf {K} ^{(r,m)}(\mathbf {A} \otimes \mathbf {B} )\mathbf {K} ^{(n,q)}=\mathbf {B} \otimes \mathbf {A} .}
- This property is often used in developing the higher order statistics of Wishart covariance matrices.[2]
- The case of n=q=1 for the above equation states that for any column vectors v,w of sizes m,r respectively,
- {\displaystyle \mathbf {K} ^{(r,m)}(\mathbf {v} \otimes \mathbf {w} )=\mathbf {w} \otimes \mathbf {v} .}
- This property is the reason that this matrix is referred to as the "swap operator" in the context of quantum information theory.
- Two explicit forms for the commutation matrix are as follows: if er,j denotes the j-th canonical vector of dimension r (i.e. the vector with 1 in the j-th coordinate and 0 elsewhere) then
- {\displaystyle \mathbf {K} ^{(r,m)}=\sum _{i=1}^{r}\sum _{j=1}^{m}\left(\mathbf {e} _{r,i}{\mathbf {e} _{m,j}}^{\mathrm {T} }\right)\otimes \left(\mathbf {e} _{m,j}{\mathbf {e} _{r,i}}^{\mathrm {T} }\right)=\sum _{i=1}^{r}\sum _{j=1}^{m}\left(\mathbf {e} _{r,i}\otimes \mathbf {e} _{m,j}\right)\left(\mathbf {e} _{m,j}\otimes \mathbf {e} _{r,i}\right)^{\mathrm {T} }.}
- The commutation matrix may be expressed as the following block matrix:
- {\displaystyle \mathbf {K} ^{(m,n)}={\begin{bmatrix}\mathbf {K} _{1,1}&\cdots &\mathbf {K} _{1,n}\\\vdots &\ddots &\vdots \\\mathbf {K} _{m,1}&\cdots &\mathbf {K} _{m,n},\end{bmatrix}},}
- Where the p,q entry of n x m block-matrix Ki,j is given by
- {\displaystyle \mathbf {K} _{ij}(p,q)={\begin{cases}1&i=q{\text{ and }}j=p,\0円&{\text{otherwise}}.\end{cases}}}
- For example,
- {\displaystyle \mathbf {K} ^{(3,4)}=\left[{\begin{array}{ccc|ccc|ccc|ccc}1&0&0&0&0&0&0&0&0&0&0&0\0円&0&0&1&0&0&0&0&0&0&0&0\0円&0&0&0&0&0&1&0&0&0&0&0\0円&0&0&0&0&0&0&0&0&1&0&0\\\hline 0&1&0&0&0&0&0&0&0&0&0&0\0円&0&0&0&1&0&0&0&0&0&0&0\0円&0&0&0&0&0&0&1&0&0&0&0\0円&0&0&0&0&0&0&0&0&0&1&0\\\hline 0&0&1&0&0&0&0&0&0&0&0&0\0円&0&0&0&0&1&0&0&0&0&0&0\0円&0&0&0&0&0&0&0&1&0&0&0\0円&0&0&0&0&0&0&0&0&0&0&1\end{array}}\right].}
Code
[edit ]For both square and rectangular matrices of m rows and n columns, the commutation matrix can be generated by the code below.
Python
[edit ]importnumpyasnp defcomm_mat(m, n): # determine permutation applied by K w = np.arange(m * n).reshape((m, n), order="F").T.ravel(order="F") # apply this permutation to the rows (i.e. to each column) of identity matrix and return result return np.eye(m * n)[w, :]
Alternatively, a version without imports:
# Kronecker delta defdelta(i, j): return int(i == j) defcomm_mat(m, n): # determine permutation applied by K v = [m * j + i for i in range(m) for j in range(n)] # apply this permutation to the rows (i.e. to each column) of identity matrix I = [[delta(i, j) for j in range(m * n)] for i in range(m * n)] return [I[i] for i in v]
MATLAB
[edit ]functionP=com_mat(m, n) % determine permutation applied by K A=reshape(1:m*n,m,n); v=reshape(A',1,[]); % apply this permutation to the rows (i.e. to each column) of identity matrix P=eye(m*n); P=P(v,:);
R
[edit ]# Sparse matrix version comm_mat=function(m,n){ i=1:(m*n) j=NULL for(kin1:m){ j=c(j,m*0:(n-1)+k) } Matrix::sparseMatrix( i=i,j=j,x=1 ) }
Example
[edit ]Let {\displaystyle A} denote the following {\displaystyle 3\times 2} matrix:
- {\displaystyle A={\begin{bmatrix}1&4\2円&5\3円&6\\\end{bmatrix}}.}
{\displaystyle A} has the following column-major and row-major vectorizations (respectively):
- {\displaystyle \mathbf {v} _{\text{col}}=\operatorname {vec} (A)={\begin{bmatrix}1\2円\3円\4円\5円\6円\\\end{bmatrix}},\quad \mathbf {v} _{\text{row}}=\operatorname {vec} (A^{\mathrm {T} })={\begin{bmatrix}1\4円\2円\5円\3円\6円\\\end{bmatrix}}.}
The associated commutation matrix is
- {\displaystyle K=\mathbf {K} ^{(3,2)}={\begin{bmatrix}1&\cdot &\cdot &\cdot &\cdot &\cdot \\\cdot &\cdot &\cdot &1&\cdot &\cdot \\\cdot &1&\cdot &\cdot &\cdot &\cdot \\\cdot &\cdot &\cdot &\cdot &1&\cdot \\\cdot &\cdot &1&\cdot &\cdot &\cdot \\\cdot &\cdot &\cdot &\cdot &\cdot &1\\\end{bmatrix}},}
(where each {\displaystyle \cdot } denotes a zero). As expected, the following holds:
- {\displaystyle K^{\mathrm {T} }K=KK^{\mathrm {T} }=\mathbf {I} _{6}}
- {\displaystyle K\mathbf {v} _{\text{col}}=\mathbf {v} _{\text{row}}}
References
[edit ]- Jan R. Magnus and Heinz Neudecker (1988), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley.