Exchange matrix
In mathematics, especially linear algebra, the exchange matrices (also called the reversal matrix, backward identity, or standard involutory permutation) are special cases of permutation matrices, where the 1 elements reside on the antidiagonal and all other elements are zero. In other words, they are 'row-reversed' or 'column-reversed' versions of the identity matrix.[1]
{\displaystyle {\begin{aligned}J_{2}&={\begin{pmatrix}0&1\1円&0\end{pmatrix}}\\[4pt]J_{3}&={\begin{pmatrix}0&0&1\0円&1&0\1円&0&0\end{pmatrix}}\\&\quad \vdots \\[2pt]J_{n}&={\begin{pmatrix}0&0&\cdots &0&1\0円&0&\cdots &1&0\\\vdots &\vdots &,円{}_{_{\displaystyle \cdot }}\!,円{}^{_{_{\displaystyle \cdot }}}\!{\dot {\phantom {j}}}&\vdots &\vdots \0円&1&\cdots &0&0\1円&0&\cdots &0&0\end{pmatrix}}\end{aligned}}}
Definition
[edit ]If J is an n ×ばつ n exchange matrix, then the elements of J are {\displaystyle J_{i,j}={\begin{cases}1,&i+j=n+1\0,円&i+j\neq n+1\\\end{cases}}}
Properties
[edit ]- Premultiplying a matrix by an exchange matrix flips vertically the positions of the former's rows, i.e.,{\displaystyle {\begin{pmatrix}0&0&1\0円&1&0\1円&0&0\end{pmatrix}}{\begin{pmatrix}1&2&3\4円&5&6\7円&8&9\end{pmatrix}}={\begin{pmatrix}7&8&9\4円&5&6\1円&2&3\end{pmatrix}}.}
- Postmultiplying a matrix by an exchange matrix flips horizontally the positions of the former's columns, i.e.,{\displaystyle {\begin{pmatrix}1&2&3\4円&5&6\7円&8&9\end{pmatrix}}{\begin{pmatrix}0&0&1\0円&1&0\1円&0&0\end{pmatrix}}={\begin{pmatrix}3&2&1\6円&5&4\9円&8&7\end{pmatrix}}.}
- Exchange matrices are symmetric; that is: {\displaystyle J_{n}^{\mathsf {T}}=J_{n}.}
- For any integer k: {\displaystyle J_{n}^{k}={\begin{cases}I&{\text{ if }}k{\text{ is even,}}\\[2pt]J_{n}&{\text{ if }}k{\text{ is odd.}}\end{cases}}}In particular, Jn is an involutory matrix; that is, {\displaystyle J_{n}^{-1}=J_{n}.}
- The trace of Jn is 1 if n is odd and 0 if n is even. In other words: {\displaystyle \operatorname {tr} (J_{n})={\frac {1-(-1)^{n}}{2}}=n{\bmod {2}}.}
- The determinant of Jn is: {\displaystyle \det(J_{n})=(-1)^{\lfloor n/2\rfloor }=(-1)^{\frac {n(n-1)}{2}}} As a function of n, it has period 4, giving 1, 1, −1, −1 when n is congruent modulo 4 to 0, 1, 2, and 3 respectively.
- The characteristic polynomial of Jn is: {\displaystyle \det(\lambda I-J_{n})=(\lambda -1)^{\lceil n/2\rceil }(\lambda +1)^{\lfloor n/2\rfloor }={\begin{cases}{\big [}(\lambda +1)(\lambda -1){\big ]}^{\frac {n}{2}}&{\text{ if }}n{\text{ is even,}}\\[4pt](\lambda -1)^{\frac {n+1}{2}}(\lambda +1)^{\frac {n-1}{2}}&{\text{ if }}n{\text{ is odd,}}\end{cases}}}
its eigenvalues are 1 (with multiplicity {\displaystyle \lceil n/2\rceil }) and -1 (with multiplicity {\displaystyle \lfloor n/2\rfloor }).
- The adjugate matrix of Jn is: {\displaystyle \operatorname {adj} (J_{n})=\operatorname {sgn} (\pi _{n})J_{n}.} (where sgn is the sign of the permutation πk of k elements).
Relationships
[edit ]- An exchange matrix is the simplest anti-diagonal matrix.
- Any matrix A satisfying the condition AJ = JA is said to be centrosymmetric.
- Any matrix A satisfying the condition AJ = JAT is said to be persymmetric.
- Symmetric matrices A that satisfy the condition AJ = JA are called bisymmetric matrices. Bisymmetric matrices are both centrosymmetric and persymmetric.
See also
[edit ]- Pauli matrices (the first Pauli matrix is a ×ばつ 2 exchange matrix)
References
[edit ]- ^ Horn, Roger A.; Johnson, Charles R. (2012), "§0.9.5.1 n-by-n reversal matrix", Matrix Analysis (2nd ed.), Cambridge University Press, p. 33, ISBN 978-1-139-78888-5 .