Jump to content
Wikipedia The Free Encyclopedia

Convergent matrix

From Wikipedia, the free encyclopedia
Matrix that converges to zero matrix

In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.

Background

[edit ]

When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.

Definition

[edit ]

We call an n × n matrix T a convergent matrix if

lim k ( T k ) i j = 0 , {\displaystyle \lim _{k\to \infty }(\mathbf {T} ^{k})_{ij}=0,} {\displaystyle \lim _{k\to \infty }(\mathbf {T} ^{k})_{ij}=0,} 1

for each i = 1, 2, ..., n and j = 1, 2, ..., n.[1] [2] [3]

Example

[edit ]

Let

T = ( 1 4 1 2 0 1 4 ) . {\displaystyle {\begin{aligned}&\mathbf {T} ={\begin{pmatrix}{\frac {1}{4}}&{\frac {1}{2}}\\[4pt]0&{\frac {1}{4}}\end{pmatrix}}.\end{aligned}}} {\displaystyle {\begin{aligned}&\mathbf {T} ={\begin{pmatrix}{\frac {1}{4}}&{\frac {1}{2}}\\[4pt]0&{\frac {1}{4}}\end{pmatrix}}.\end{aligned}}}

Computing successive powers of T, we obtain

T 2 = ( 1 16 1 4 0 1 16 ) , T 3 = ( 1 64 3 32 0 1 64 ) , T 4 = ( 1 256 1 32 0 1 256 ) , T 5 = ( 1 1024 5 512 0 1 1024 ) , {\displaystyle {\begin{aligned}&\mathbf {T} ^{2}={\begin{pmatrix}{\frac {1}{16}}&{\frac {1}{4}}\\[4pt]0&{\frac {1}{16}}\end{pmatrix}},\quad \mathbf {T} ^{3}={\begin{pmatrix}{\frac {1}{64}}&{\frac {3}{32}}\\[4pt]0&{\frac {1}{64}}\end{pmatrix}},\quad \mathbf {T} ^{4}={\begin{pmatrix}{\frac {1}{256}}&{\frac {1}{32}}\\[4pt]0&{\frac {1}{256}}\end{pmatrix}},\quad \mathbf {T} ^{5}={\begin{pmatrix}{\frac {1}{1024}}&{\frac {5}{512}}\\[4pt]0&{\frac {1}{1024}}\end{pmatrix}},\end{aligned}}} {\displaystyle {\begin{aligned}&\mathbf {T} ^{2}={\begin{pmatrix}{\frac {1}{16}}&{\frac {1}{4}}\\[4pt]0&{\frac {1}{16}}\end{pmatrix}},\quad \mathbf {T} ^{3}={\begin{pmatrix}{\frac {1}{64}}&{\frac {3}{32}}\\[4pt]0&{\frac {1}{64}}\end{pmatrix}},\quad \mathbf {T} ^{4}={\begin{pmatrix}{\frac {1}{256}}&{\frac {1}{32}}\\[4pt]0&{\frac {1}{256}}\end{pmatrix}},\quad \mathbf {T} ^{5}={\begin{pmatrix}{\frac {1}{1024}}&{\frac {5}{512}}\\[4pt]0&{\frac {1}{1024}}\end{pmatrix}},\end{aligned}}}
T 6 = ( 1 4096 3 1024 0 1 4096 ) , {\displaystyle {\begin{aligned}\mathbf {T} ^{6}={\begin{pmatrix}{\frac {1}{4096}}&{\frac {3}{1024}}\\[4pt]0&{\frac {1}{4096}}\end{pmatrix}},\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {T} ^{6}={\begin{pmatrix}{\frac {1}{4096}}&{\frac {3}{1024}}\\[4pt]0&{\frac {1}{4096}}\end{pmatrix}},\end{aligned}}}

and, in general,

T k = ( ( 1 4 ) k k 2 2 k 1 0 ( 1 4 ) k ) . {\displaystyle {\begin{aligned}\mathbf {T} ^{k}={\begin{pmatrix}({\frac {1}{4}})^{k}&{\frac {k}{2^{2k-1}}}\\[4pt]0&({\frac {1}{4}})^{k}\end{pmatrix}}.\end{aligned}}} {\displaystyle {\begin{aligned}\mathbf {T} ^{k}={\begin{pmatrix}({\frac {1}{4}})^{k}&{\frac {k}{2^{2k-1}}}\\[4pt]0&({\frac {1}{4}})^{k}\end{pmatrix}}.\end{aligned}}}

Since

lim k ( 1 4 ) k = 0 {\displaystyle \lim _{k\to \infty }\left({\frac {1}{4}}\right)^{k}=0} {\displaystyle \lim _{k\to \infty }\left({\frac {1}{4}}\right)^{k}=0}

and

lim k k 2 2 k 1 = 0 , {\displaystyle \lim _{k\to \infty }{\frac {k}{2^{2k-1}}}=0,} {\displaystyle \lim _{k\to \infty }{\frac {k}{2^{2k-1}}}=0,}

T is a convergent matrix. Note that ρ(T) = 1/4, where ρ(T) represents the spectral radius of T, since 1/4 is the only eigenvalue of T.

Characterizations

[edit ]

Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:

  1. lim k T k = 0 , {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} for some natural norm;
  2. lim k T k = 0 , {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} for all natural norms;
  3. ρ ( T ) < 1 {\displaystyle \rho (\mathbf {T} )<1} {\displaystyle \rho (\mathbf {T} )<1};
  4. lim k T k x = 0 , {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}\mathbf {x} =\mathbf {0} ,} {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}\mathbf {x} =\mathbf {0} ,} for every x.[4] [5] [6] [7]

Iterative methods

[edit ]
Main article: Iterative method

A general iterative method involves a process that converts the system of linear equations

A x = b {\displaystyle \mathbf {Ax} =\mathbf {b} } {\displaystyle \mathbf {Ax} =\mathbf {b} } 2

into an equivalent system of the form

x = T x + c {\displaystyle \mathbf {x} =\mathbf {Tx} +\mathbf {c} } {\displaystyle \mathbf {x} =\mathbf {Tx} +\mathbf {c} } 3

for some matrix T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution vectors is generated by computing

x ( k + 1 ) = T x ( k ) + c {\displaystyle \mathbf {x} ^{(k+1)}=\mathbf {Tx} ^{(k)}+\mathbf {c} } {\displaystyle \mathbf {x} ^{(k+1)}=\mathbf {Tx} ^{(k)}+\mathbf {c} } 4

for each k ≥ 0.[8] [9] For any initial vector x(0) R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}}, the sequence { x ( k ) } k = 0 {\displaystyle \lbrace \mathbf {x} ^{\left(k\right)}\rbrace _{k=0}^{\infty }} {\displaystyle \lbrace \mathbf {x} ^{\left(k\right)}\rbrace _{k=0}^{\infty }} defined by (4 ), for each k ≥ 0 and c ≠ 0, converges to the unique solution of (3 ) if and only if ρ(T) < 1, that is, T is a convergent matrix.[10] [11]

Regular splitting

[edit ]
Main article: Matrix splitting

A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations (2 ) above, with A non-singular, the matrix A can be split, that is, written as a difference

A = B C {\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} } {\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} } 5

so that (2 ) can be re-written as (4 ) above. The expression (5 ) is a regular splitting of A if and only if B−10 and C0, that is, B−1 and C have only nonnegative entries. If the splitting (5 ) is a regular splitting of the matrix A and A−10, then ρ(T) < 1 and T is a convergent matrix. Hence the method (4 ) converges.[12] [13]

Semi-convergent matrix

[edit ]

We call an n × n matrix T a semi-convergent matrix if the limit

lim k T k {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}} {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}} 6

exists.[14] If A is possibly singular but (2 ) is consistent, that is, b is in the range of A, then the sequence defined by (4 ) converges to a solution to (2 ) for every x(0) R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}} if and only if T is semi-convergent. In this case, the splitting (5 ) is called a semi-convergent splitting of A.[15]

See also

[edit ]

Notes

[edit ]
  1. ^ Burden & Faires (1993, p. 404)
  2. ^ Isaacson & Keller (1994, p. 14)
  3. ^ Varga (1962, p. 13)
  4. ^ Burden & Faires (1993, p. 404)
  5. ^ Isaacson & Keller (1994, pp. 14, 63)
  6. ^ Varga (1960, p. 122)
  7. ^ Varga (1962, p. 13)
  8. ^ Burden & Faires (1993, p. 406)
  9. ^ Varga (1962, p. 61)
  10. ^ Burden & Faires (1993, p. 412)
  11. ^ Isaacson & Keller (1994, pp. 62–63)
  12. ^ Varga (1960, pp. 122–123)
  13. ^ Varga (1962, p. 89)
  14. ^ Meyer & Plemmons (1977, p. 699)
  15. ^ Meyer & Plemmons (1977, p. 700)

References

[edit ]
Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms

AltStyle によって変換されたページ (->オリジナル) /