コンテンツにスキップ
Wikipedia

事前確率

出典: フリー百科事典『ウィキペディア(Wikipedia)』
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)
翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
  • 英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。
  • 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。
  • 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。
  • 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。
  • 翻訳後、{{翻訳告知|en|Prior probability|...}}ノートに追加することもできます。
  • Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります。
統計学
ベイズ統計学
理論
技法

事前確率(じぜんかくりつ、: prior probability)とは条件付き確率の一種で、証拠がない条件で、ある変数について知られていることを確率として表現するものである。先験確率(せんけんかくりつ)、アプリオリ確率ともいう[1] [2]

対になる用語が事後確率 で、これは証拠を考慮に入れた条件での変数の条件付き確率である。事後確率はベイズの定理により、事前確率に尤度関数を掛けて得られる。

事前確率と事後確率は、従来の頻度主義統計学では用いられない、ベイズ統計学の用語である。なお本項では「変数」という用語を、観測できる確率変数のほかに、観測できない(隠れた)変数、母数あるいは仮説も含めて用いている。

事前確率分布

[編集 ]

ベイズ推定では、不確定な量 p(たとえば p は将来の選挙で、ある政治家Aに投票する有権者の割合)の事前確率分布 Prior probability distribution(これを事前分布 Priorと略すことが多い)は、データ(たとえば世論調査)が得られる前にある人が(主観的に)抱いている p についての不確かさを表す確率分布である。これは不確定な量のランダムさではなく、信念が弱いという意味の不確かさである。ベイズの定理を応用し、事前確率に尤度関数をかけて規格化する(合計量または積分量を1とする)ことで、事後確率分布が得られる。これはデータが与えられた場合の不確定量の条件付き確率である。

事前確率は純粋に主観的な経験者の評価を意味することが多く、事前に持っている情報を表すと解釈される。事前分布として具体的にどのようなものを用いるかは場合によって異なり、また人によって考え方も異なる。分散に関して情報がある場合(例えば、今日までの毎日定時の気温から、明日の定時の気温を予想する場合)を情報事前分布と呼ぶ。それに比較して情報がない場合を無情報事前分布 (non-informative prior distribution) という。後者の場合には広く薄い信念を表明している形状が望まれ、その一類型として一様分布があるが、これ以外にも多数の理論分布が存在する。無情報的事前分布は公的分析に用いられる。

また事前分布と事後分布が同じ確率分布族に属すことを仮定する共役事前分布も用いられる。

脚注

[編集 ]
  1. ^ 確率の哲学的試論, 解説.
  2. ^ 伏見, II章確率論 8節公理系 p.64.

参考文献

[編集 ]

関連項目

[編集 ]
標本調査
記述統計学
連続データ
位置
分散
モーメント
カテゴリデータ
推計統計学
仮説検定
パラメトリック
ノンパラメトリック
その他
区間推定
モデル選択基準
その他
ベイズ統計学
確率
その他
相関
相関係数
その他
モデル
回帰
線形
非線形
時系列
分類
線形
二次
非線形
その他
教師なし学習
クラスタリング
密度推定 (英語版)
その他
統計図表
生存時間分析
歴史
応用
出版物
全般
その他
カテゴリ カテゴリ

AltStyle によって変換されたページ (->オリジナル) /