std::ranges::mismatch, std::ranges::mismatch_result
std::ranges
<algorithm>
std::input_iterator I2, std::sentinel_for <I2> S2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity >
requires std::indirectly_comparable <I1, I2, Pred, Proj1, Proj2>
constexpr mismatch_result<I1, I2>
mismatch( I1 first1, S1 last1, I2 first2, S2 last2,
class Pred = ranges::equal_to,
class Proj1 = std::identity, class Proj2 = std::identity >
requires std::indirectly_comparable <
ranges::iterator_t <R1>, ranges::iterator_t <R2>, Pred, Proj1, Proj2>
constexpr mismatch_result<ranges::borrowed_iterator_t <R1>,
ranges::borrowed_iterator_t <R2>>
mismatch( R1&& r1, R2&& r2, Pred pred = {},
using mismatch_result = ranges::in_in_result <I1, I2>;
Returns the first mismatching pair of projected elements from two ranges: one defined by [
first1,
last1)
or r1 and another defined by [
first2,
last2)
or r2.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
[edit] Parameters
[edit] Return value
ranges::mismatch_result
with iterators to the first two non-equal elements.
If no mismatches are found when the comparison reaches last1 or last2, whichever happens first, the object holds the end iterator and the corresponding iterator from the other range.
[edit] Complexity
At most std::min (last1 - first1, last2 - first2) applications of the predicate and corresponding projections.
[edit] Possible implementation
struct mismatch_fn { template<std::input_iterator I1, std::sentinel_for <I1> S1, std::input_iterator I2, std::sentinel_for <I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable <I1, I2, Pred, Proj1, Proj2> constexpr std::mismatch_result<I1, I2> operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) if (not std::invoke (pred, std::invoke (proj1, *first1), std::invoke (proj2, *first2))) break; return {first1, first2}; } template<ranges::input_range R1, ranges::input_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable <ranges::iterator_t <R1>, ranges::iterator_t <R2>, Pred, Proj1, Proj2> constexpr ranges::mismatch_result<ranges::borrowed_iterator_t <R1>, ranges::borrowed_iterator_t <R2>> operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin (r1), ranges::end (r1), ranges::begin (r2), ranges::end (r2), std::ref (pred), std::ref (proj1), std::ref (proj2)); } }; inline constexpr mismatch_fn mismatch;
[edit] Example
This program determines the longest substring that is simultaneously found at the very beginning and at the very end of the given string, in reverse order (possibly overlapping).
#include <algorithm> #include <iostream> #include <ranges> #include <string_view> [[nodiscard]] constexpr std::string_view mirror_ends(const std::string_view in) { const auto end = std::ranges::mismatch(in, in | std::views::reverse ).in1; return {in.cbegin(), end}; } int main() { std::cout << mirror_ends("abXYZba") << '\n' << mirror_ends("abca") << '\n' << mirror_ends("ABBA") << '\n' << mirror_ends("level") << '\n'; using namespace std::literals::string_view_literals; static_assert("123"sv == mirror_ends("123!@#321")); static_assert("radar"sv == mirror_ends("radar")); }
Output:
ab a ABBA level
[edit] See also
(algorithm function object)[edit]
(algorithm function object)[edit]